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ABSTRACT 
 
 
 
This thesis establishes a framework for evaluating automated configuration 

management tools for use in high assurance software development projects and uses the 

framework to evaluate eight tools. The evaluation framework identifies a dozen feature 

areas that affect a high assurance project team’s ability to achieve its configuration 

management goals and evaluates the different methods that existing tools use to 

implement each feature area.  Each implementation method is assigned a risk rating that 

approximates the relative risk that the method adds to the overall configuration 

management process. The tools with the lowest total ratings minimize risk to high 

assurance projects. 

The results of the evaluation show that although certain tools are less risky to use 

than other tools for high assurance projects, no tool minimizes risk in all feature areas. 

Furthermore, none of the existing tools are designed to leverage high assurance 

environments—i.e. none run on operating systems that have themselves been evaluated 

as meeting high assurance requirements. Thus, high assurance development projects that 

want to leverage the benefits of configuration management tools and achieve a 

sufficiently strong configuration management solution must employ existing tools in a 

protected environment that specifically addresses the risks created by the tools’ 

implementation methods.  
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I. INTRODUCTION 

A. PURPOSE OF STUDY 

This thesis is part of the Diamond High Assurance Security Program’s Trusted 

Computing Exemplar Project of the Naval Postgraduate School’s Center for INFOSEC 

Studies and Research (CiSR). The Exemplar project will provide an “openly distributed 

worked example of how high assurance trusted computing components can be built” 

[CISR02]. The Exemplar project is a response to the current dearth of high security, high 

assurance, off-the-shelf products available to protect the National Information 

Infrastructure. By providing to the broad community a prototype framework for high 

assurance system development as well as a trusted computing component developed and 

evaluated under this framework, the Exemplar project will begin to fill the existing void 

and enable others to more easily pursue trusted computer systems and networks.  

A key part of the Exemplar’s prototype framework for constructing trusted 

computing systems and components is the configuration management of specifications, 

software, tools, processes, etc. Effective configuration management requires the use of an 

automated configuration management software tool. The goal of this thesis is to both help 

the Exemplar project and other high assurance projects select the CM tool that best meets 

their needs, and to help CM tool vendors to better understand how to design their tools to 

better support high assurance projects.  

B.  INTRODUCTION TO HIGH ASSURANCE SYSTEMS 

1. High Assurance 

Many vendors today claim that their systems are “high assurance” or “secure.” 

How do we evaluate such claims? One way to think about such claims is to compare 

them with the claims a hotel makes about the security of its system for guarding your 

valuables.  

“You can rest assured your jewels are safe with us,” the manager insists. But 

before you will have any assurance in the hotel’s system for guarding your jewels, you 

need to: 
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1. Understand what the hotel means by “secure;” 

2. Evaluate the measures the hotel is taking to provide this security; 
and 

3. Verify the measures yourself.  

First, you ask what the hotel means by “secure.” What are the threats they are 

protecting you from? Loss? Theft? Natural Disasters? Damage? The hotel hands you a 

form detailing their liability. It says that your valuables are guaranteed against theft up to 

$15,000, but in the event of a natural disaster or fire, they take no responsibility for any 

damage or loss. The manager points out that other hotels are much less secure – they do 

not guarantee anything; they just claim you would have a reduced risk of theft if you 

leave your valuables to the front desk instead of in your hotel room. 

Next, you ask what measures the hotel has taken to ensure that the jewels are safe. 

The hotel tells you that they have a high-quality safe, and the manager and assistant 

manager on duty carry the only two keys to the safe. Guards monitor the safe via video 

camera at all times. Before items are placed within the safe, they are attached to a label 

with the guest’s name and signature. The front desk requires two photo IDs in and a 

matching signature in order to withdraw the jewels from the safe.  

Assume you are satisfied with the description of the measures provided, but you 

want to verify for yourself that the hotel has actually implemented the manager’s claims. 

So you ask if you can see for yourself that the video camera is installed and working. You 

ask to see the log listing guests’ signatures. You check that the manager and assistant 

manager have keys on them that do open the safe. All seems well. But how can you 

check that their keys are the only keys to the safe? Perhaps some of the keys to the guest 

rooms also open the safe. Perhaps they leave a key next to the safe.  

Despite these last questions, you may have enough assurance in the hotel’s 

security definition and security measures, given your independent verification, that you 

would leave your jewels in the safe. But given that you can’t verify the non-existence of 

other keys to the safe, you can’t have “high assurance” in the hotel’s claims. As 

elaborated below, an evaluator of a “high assurance” computer system can verify the 



 

 3 

non-existence of “other keys” (in computer terms, can verify the non-existence of trap-

doors).  

2. High Assurance in Computer Software Systems 

A computer software system’s claim to be “secure” is just a claim unless it fulfills 

the same requirements the hotel fulfilled: the system’s makers must provide:  

1. A precise definition of “secure;” 

2. The measures taken to implement the specific security definition; 
and 

3. A way for third parties to verify that the measures enforce security 
claims.  

Whether and how the system’s makers fulfill these requirements determines the degree of 

assurance you can have in the system’s security.  

a. Definition 

The precise definition of “secure” is provided by a security policy. The 

security policy states the assets (e.g., files) and the threats (e.g., unauthorized access) 

against which the system protects its assets. In high assurance systems, the definition of 

secure includes: 

1. Only and exactly the functionality as defined. That is, the system 
has not been subverted with unspecified functionality (e.g., there 
are no extra keys to the safe in the hotel analogy). System 
subversion involves the “clandestine and methodical undermining 
of a system by planting artifices (trap doors) in it that bypass its 
security controls” [ANDR02]. 

2. Bounded information flow (per the security policy) 

b. Measures 

The measures that secure system development efforts take to ensure that 

the system developed enforces the given security definition will vary based on the level 

of assurance the system claims to provide. For high assurance systems, there are five key 

measures:  

1. Proving that the security policy is clear and consistent. To do this, 
the policy is translated into a formal security model whose claims 
and consistency can be proved using mathematical proving tools.  
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2. A system architecture and design that can be evaluated, e.g., 
through the use of abstraction, layering and information hiding 
with significant system engineering directed toward minimizing 
the complexity of the protection mechanisms and excluding from 
the security perimeter modules that are not protection-critical.  A 
descriptive top-level specification (DLTS) completely and 
accurately describes the protection mechanisms. 

3. A Formal Top Level Specification (FTLS) with precise syntax and 
well-defined semantics, which is shown to be a complete and 
accurate representation of the security perimeter and to be 
internally consistent. 

4. Code correspondence that explicitly maps each line of code back to 
the FTLS to ensure that the implementation is complete, error-free 
and includes no additional, unspecified functionality.  

5. Testing results from a test plan driven by FTLS to verify presence 
of security functionality and absence of functionality that would 
violate the desired security properties of the system. 

 
c. Verification 

Systems may provide various types of verification of their security claims. 

In high assurance systems, the artifacts listed above provide the verification that the 

system is “secure” (as defined by the security policy model). These artifacts (security 

model, proof of the model, DTLS, FTLS, proof of the FTLS, code, FTLS-to-code 

correspondence, implementation documentation, test plans, test results) are available for 

anyone to independently review. Anyone can regenerate the proofs and verify the 

security claims, including the absence of subversion. 

3. Official Definitions of High Assurance 

There are two primary sources that the computer industry relies upon when it 

comes to High Assurance Systems. The first one is the United States Department of 

Defense’s (DoD’s) 1985 Directive to use Trusted Computer System Evaluation Criteria, 

better known as the Orange Book [DODD85]. The Orange Book’s purpose was to 

provide security criteria and technical evaluation methodologies to support the DoD’s 

systems security policy and the DoD’s evaluation and approval/accreditation 

responsibilities [ORNG85]. The Orange Book established six hierarchical classes and 

each class’ requirements, both in terms of security features and assurance. The most 
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trusted, highest assurance class was known as A1. Generally speaking, when people 

talked about “high assurance” or “trusted” systems, they were referring to systems which 

could be evaluated at A1. 

Systems that were evaluated at A1 (or equivalent level) in the past 20+ years 

include SCOMP, Gemini Trusted Network Processor, and Boeing MLS LAN products 

[EVAL03]. Note that although evaluations at the A1 level were system evaluations, not 

all parts of the system had to fulfill the same requirements. The parts that comprised the 

Trusted Computing Base (TCB) were wholly responsible for maintaining the system’s 

security properties.  Designers had to demonstrate that the non-TCB components of the 

system could not violate the policies enforced by the TCB. 

Though many in the security field still refer to the Orange book because multiple 

systems were evaluated using its criteria and because it directly addressed subversion, 

officially the Orange Book was canceled by the DoD in October 2002, by DoD Directive 

8500.1, "Information Assurance (IA)” [DODD02]. The new DoD standard is the 

Common Criteria, an international effort to develop criteria for evaluating information 

technology security. The Common Criteria provides a scale for rating the assurance level 

of a system based on defined characteristics. The Criteria’s highest assurance level is 

“Evaluation Assurance Level 7: Formally Verified Design and Tested” (EAL7). Note that 

EAL7 itself does not include any specific functional features, as the Orange Book’s A1 

did; it is solely focused on assurance.  

C. INTRODUCTION TO CONFIGURATION MANAGEMENT (“CM”) 

Software development efforts are marked by a number of challenges that can 

easily create chaos, including: 

• High complexity  

• Large teams 

• Widely dispersed teams 

• Developers working in parallel 

• Changing requirements 

• Multiple versions for different markets or customers 

• Pressure to meet customers’ needs quickly  
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In such a chaotic environment, critical questions such as who made recent changes (and 

why and with whose approval), when some piece of code broke, what code a specific 

customer is using, and which components are related, often cannot be answered easily 

[BERC03].  

CM attempts to prevent the chaos. CM is the disciplined approach of controlling 

changes in a large and complex system throughout its life cycle  [IRCM02]. CM can be 

used to control any type of system development, but this thesis focuses on CM for 

software system development. CM in software development is the “disciplined approach 

to managing the evolution of the software development and maintenance practices” 

[DART00]. In a formal sense, the “objective of CM is to ensure a systematic and 

traceable development process, so that at all times a system is in a well-defined state with 

accurate specifications and verified quality attributes" [IRCM02]. CM should validate 

and maintain the system’s integrity by ensuring that the systems’ objects are the 

appropriate ones.  

But how is CM done? How does it prevent chaos? CM identifies all items 

involved in the development process, controls these items through any and all changes, 

accounts for the items’ statuses, and audits items to ensure that any composite items (i.e. 

“configurations”) are a valid, consistent set of components [DART00].  CM is like the 

hotel’s safe and the procedures for adding and removing items from the safe that keep 

guests’ valuables secure.  

"CM is pervasive across the software development and maintenance life 
cycles. It is the core support system that enables safe and efficient 
development and maintenance" [DART00]. 

CM provides many benefits to a development effort. At a high level, CM serves 

as a mechanism for communication, change management, and reproducibility [BERC03]. 

In addition to “control over everything” [DART00], CM provides numerous business and 

technical benefits (selected from [DART00]). See Table 1. Note that some of these 

benefits require the use of an automated CM tool. 
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Business Benefits of CM Technical Benefits of CM 
• Insurance against the unknown 
• Very easy audits 
• Foundation for process and 

quality improvement 
• Eliminate avoidable mistakes 
• Fewer bugs in released product 
• Automatic quality control 
• Teamwork optimization 
• More product lines/versions 

possible 

• All objects versioned 
• Failure recovery, rollback support 
• Repeatability of all steps 
• Faster change cycles 
• Queries 
• Audit Log 
• Process enforcement 
• Enable standards certification 
• Minimal change complexity 
• Change propagation 
• Parallel development 

 
Table 1.   CM Benefits 

 
D. HISTORICAL CONTEXT OF CM IN HIGH ASSURANCE SYSTEM 

DEVELOPMENT 

The definitions of CM given in Section C.1 are from books and articles targeted 

for the general development market; the sources give scant if any mention of assurance or 

security issues. For example, Dart’s one reference to security is, “Programmers must be 

very cognizant now of security issues since, in theory, the world could try and hack into 

the Web system” [DART00].  

High assurance efforts tend to have less chaos than typical software efforts, since 

the software’s complexity must be relatively low and its teams small and centralized. So 

one might imagine that high assurance efforts need CM less than other efforts. But the 

purpose of CM is not just to tame the chaos, but to “Ensure that nothing stray enters the 

system by accident or maliciously” [DART00] (i.e. that the system is not subverted). 

Unlike most software, which is judged primarily by its functionality, high assurance 

software is judged firstly by its assurance; it isn’t high assurance software if something 

stray does enter the system. In addition to keeping out stray items, high assurance efforts 

need to provide a concise and complete definition of the protection mechanism: to clearly 

identify what is part of the mechanism and what is outside of it. Since CM helps to 

prevent subversion and to identify what is and is not part of the protection mechanism, 

CM plays a pivotal role in the success of high assurance efforts. 
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1. How the Relationship Began 

CM has its roots in manufacturing, not software. As products got bigger and more 

complex in the middle of the twentieth century, manufacturers became increasingly 

unable to manage product development cost effectively without formal controls. Thus in 

1962, the American Air Force, in response to control and communication problems that 

occurred during the design of its jet aircraft, developed and published a standard for CM 

(AFSCM 375-1) [LEON00].  

Software development teams quickly identified CM’s usefulness for software 

development. In the early days of CM, before the availability of sophisticated automated 

CM tools, CM processes were tedious and time consuming. This limited the use of CM to 

development efforts where the cost of time and organization was worth the benefits of 

reduced errors and improved communication, namely in large and complex systems and 

systems where an error might have catastrophic consequences to financial assets, the 

environment, human life, or national security (i.e. high assurance systems) such as 

SACDIN, the “primary network for the transmission of Emergency Action Messages 

(EAMs) to the warfighting commanders in the field” [FOAS03]. 

High assurance systems also valued configuration management because it 

provided another defense against system subversion through tighter control of changes 

and increased visibility to changes. 

Since 1962, the US government and international bodies have established a 

multitude of standards for CM. The standards explicitly define what CM plans, 

procedures, and policies are required to provide certain levels of assurance. For example, 

RTCA DO-178B, which was created in 1992, “defines a set of objectives that are 

recommended to establish assurance that airborne software has the integrity needed for 

use in a safety-related application” [RTCA03] and includes CM objectives. However, the 

most well known standards for high assurance software system development today are 

the Orange Book and the Common Criteria. 
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2. CM According to the Orange Book 

The US Department of Defense established specific CM requirements for high 

assurance (“A1”) systems, as detailed in the Orange Book in Section 4.1.3.2.3. 

Specifically, the DoD required a CM system to be in place during the entire life cycle of 

the system which maintains the system’s consistency and from which one can generate a 

new version of the system from the source code and compare it to a previous one. 

Besides the standard CM requirements, the Orange Book included a number of 

requirements unique to high assurance systems. The focus of CM, according to the 

Orange Book, is to ensure that the hardware and software are protected “against 

unauthorized changes that could cause protection mechanisms to malfunction or be 

bypassed completely” [ORNG85 5.3.3]. See Table 2 for some of the A1 requirements. 

Note that the Trusted Computing Base is considered the part of the system that is being 

evaluated for high assurance. It is typically just a subset of the full system.  

CM for Standard Systems  CM For High Assurance Systems 

CM used only during 
Implementation Phase. 

CM used during “entire life-cycle” [ORNG85 
4.1.3.2.3]. 

Track only the software 
being created. 

Track “all security-relevant hardware, firmware and 
software” [ORNG85 4.1.3.2.3]. 

Track only the code and 
tests. 

Track “formal model, the descriptive and formal 
top-level specifications, other design data, 
implementation documentation, source code, the 
running version of the object code, and test fixtures 
and documentation” [ORNG85 4.1.3.2.3]. 

Goal of using CM is to 
minimize chaos. 

Goal of CM is to provide assurance that the correct 
implementation and operation of the policy exists 
throughout the system's life cycle. Or in other 
words, “Configuration management provides 
assurance that additions, deletions, or changes made 
to the Trusted Computing Base do not compromise 
the trust of the originally evaluated system” 
[CMTS88]. 
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CM for Standard Systems  CM For High Assurance Systems 

Changes need to be tracked 
because they might 
interfere with others’ work. 

“Configuration items need to be individually 
controlled because any change to a configuration 
item may have some effect upon the properties of 
the system or the security policy of the Trusted 
Computing Base” [CMTS88]. 

 
Table 2.   CM for Standard vs. High Assurance Systems 

 

3. CM According to the Common Criteria 

The Common Criteria requirements for CM are similar in focus to those of the 

Orange Book, but they are more specific and they explicitly require the use of an 

automated CM tool. The Common Criteria divides the requirements into three areas: 

automation requirements, capabilities or characteristics of the CM system, and scope of 

the system that needs to be controlled by CM. Many of the requirements are open to 

interpretation by the evaluators. The key requirements for the EAL7 level are 

summarized below [COMC99]. 

a. Automation 

The system needs an automated way to: (1) ensure only authorized 

changes are made, (2) generate system (i.e. create binary files from code), (3) ascertain 

changes between different versions, and (4) identify all items affected by a modification. 

Furthermore, the CM Plan needs to describe the automated tools and how they are used.  

b. Capabilities 

Each version, as well as all of its components and items, must have a 

unique, documented ID. The CM plan must describe how the CM tool is used and include 

an acceptance plan describing  

• Procedures to accept new and modified items and  

• Procedures describing how CM is applied in manufacturing 

process.  
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Evidence must be provided that the CM tool is operating as described in 

the CM Plan, that the system has measures to ensure that only authorized changes are 

made, and that all items are being “effectively maintained” under CM [COMC99 

ACM_CAP.3.9C].  The CM Documentation must describe all security measures, show 

how integration procedures ensure correct and authorized generation, and justify that the 

acceptance procedures provide adequate and appropriate review of changes to all 

configuration items.  

c. Scope 

CM documentation must describe how the CM tool tracks the following: 

implementation representation, security flaws, software tools, and documentation of 

design, test, user, and administration. 

Interestingly, the Common Criteria’s EAL7 is considerably less explicit than is 

the Orange book regarded two requirements that help address subversion: protecting the 

integrity of items in the repository and protecting the integrity of the CM tool itself. 

4. The Relationship Today 

The relationship between CM and high assurance systems today is difficult to 

determine, given the limited number of high assurance systems being developed. The 

development teams for A1 projects used primarily manual CM procedures. Current high 

assurance efforts are primarily in the air vehicle area, including Lockheed Martin’s 

Advanced Tactical Fighter. Several other systems have been developed using RTCA DO-

178B standards, the standard for airworthiness in the U.S., including the Boeing 777 and 

TCAS (Traffic Alert/Collision Avoidance System).1  

As stated above, the high assurance evaluation is of the protection mechanisms 

that enforce the security policy. There are typically non-critical sections of an overall 

product that are not evaluated to meet high assurance requirements. 

                                                 
 

1 Interestingly, the paper describing the independent verification of TCAS describes the high level CM 
process they used, but the only automated tool they mention is a tracking database for formal discrepancy 
reports [TCAS99]. 
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E. HISTORICAL CONTEXT OF AUTOMATED CM TOOLS  

1. CM Before Automated Tools  

CM initially consisted of manual processes – lots of tedious, detailed, manual 

processes. Too many manual processes, as anyone who has had to follow such processes 

can attest, often cause people to make mistakes or simply skip a step out of frustration or 

perceived need [BERC03]. The Common Criteria agrees that automated systems are 

generally superior to their manual counterparts. “While both automated and manual CM 

systems can be bypassed, ignored, or prove insufficient to prevent unauthorized 

modification, automated systems are less susceptible to human error or negligence” 

[COMC99]. 

Furthermore, before efficient automated tools were available, organizations saw 

CM as useful primarily just before release [DART00]. CM wasn’t part of a developer’s 

daily work. Instead, once a developer had a piece of code working, he or she would “toss 

it over the wall” to the CM librarian. The librarian's concern was on "control, precision, 

completeness and timing," while programmers' concerns were on creating and fixing 

code as quickly as possible [DART00].  This difference in focus inevitably led to 

conflicts. 

2. The CM Tool Evolution and Revolution 

The earliest automated tools used by CM practitioners were databases that 

allowed CM librarians to track items, do basic querying, and enforce basic access control. 

Even as late as 1988, the tool offerings were quite basic, as evidenced by two of the 

popular tools, UNIX (1) SCCS and VAX DEC/CMS [CMTS88]. Both tools were 

typically “controlled” by one person (i.e. the librarian). A guide explaining how to use 

them suggests that they didn’t even provide an automated way to uniquely identify items 

[CMTS88]. 

The CM software tools available today are of an entirely different class. As 

recently as 2000, the market had an annual growth rate of more than 20% [RCM02]; 

dozens of CM products are currently available. CM tools are no longer relegated to the 

release stage or separated from the developers’ daily work. All work products are under 
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CM at all times: “everyone involved in the software development and maintenance life 

cycle can be empowered to do their work in a CM-controlled environment and with 

independence and integrity” [DART00]. Though CM tools have traditionally focused on 

the implementation phase of the development process (code, test, build), recent versions 

of the tools allow you to include pre- and post-implementation processes and artifacts 

(e.g., requirements, design, deployment, configuration) [LEON00].  Supporting the entire 

lifecycle through CM is an active area of research [IRCM02]. 

The benefits of using an automated CM tool are not just automation of repetitive 

tasks and error reduction. Automated tools also reduce development time, increase 

business agility, enable organizations to integrate information and analyze it effectively 

[LEON00]. 

3. What Today’s Tools Can Do  

The range of products that call themselves CM tools includes those that only 

perform basic version control to those that provides integrated, full process management. 

Full process management tools include features to support CM’s primary functional areas 

[DART00, LEON00].  

• Version and configuration control 

• Change management 

• Configuration item structuring 

• Construction of configurations  

• Teamwork support 

• Process/Promotion management 

• Auditing 

• Status reporting 

• Access and security 

See Chapter IV, “CM Tool Feature Area Analysis,” for a detailed discussion of 

the features of modern CM tools and Appendix A for a detailed description of the tools 

evaluated in this thesis.  
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II. THEORY FOR USING CM TOOLS IN HIGH ASSURANCE 
PROJECTS 

A. CM’S DUAL ROLE IN SYSTEM DEVELOPMENT  

Implementing CM, even with today’s automated tools, is a significant effort. Yet 

virtually all system development projects do implement some form of CM [LEON00]. 

Why? For the same reasons that the hotel buys a safe and establishes procedures for using 

it as part of the hotel’s valuables safeguarding service: first, the hotel management 

believes that doing so is the only way to deliver a high quality service; second, they use a 

safe because they want to be able to tell their guests that they use a safe. They know that 

guests will not be impressed with a service that leaves the storage location of valuables to 

the discretion of the front desk staff.  

Similarly, software development vendors pursue CM because they believe it 

improves the overall “quality” of their product and because they want to impress external 

parties such as customers, partners, and evaluators. Vendors know that being able to 

demonstrate their use of CM increases others’ perception of the quality of their product. 

Many industry standards for software development include CM requirements (e.g., 

Capability Maturity Model for Software [CMMS95]). 

Vendors developing high assurance software products are especially concerned 

about both the quality of their products and external parties’ opinions of their processes. 

The evidence created during the high assurance process demonstrates that the system 

maintains its stated security properties and thus is a quality product. If the evidence is not 

created, because of a failure of CM or of another part of the development process, the 

system is considered a failure, even if it performs other stated functions adequately.  

The CM requirements for “impressing” external parties are explicitly defined in 

existing assurance standards such as the Orange Book and the Common Criteria.  The 

standards are used by evaluators to determine the level of assurance that the system 

provides and by external parties to understand the product’s assurance level. Because CM 

provides a level of control around the development process, CM is one of the primary 
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sources of assurance for development efforts. Each increased level of assurance, up to 

and including “high assurance” systems, those that are the focus of this thesis, requires 

more extensive CM. 

B. IS CM RELEVANT IN HIGH ASSURANCE SYSTEM DEVELOPMENT? 

The development process for high assurance systems creates a trail of evidence 

that is supposed to permit “after-the-fact” evaluation. If the evidence is necessary and 

sufficient to permit “after-the-fact” evaluation, then why are CM practices—which are 

primarily about controlling change during the development process—required? Do 

evaluators not believe that the evidence is necessary and sufficient? Or are they requiring 

CM, much the way that guests require hotels to have safes, because evaluators know CM 

is the best way for a vendor to be able to successfully create the evidence?  

Let’s address each of these questions in turn. Why might evaluators not consider 

the evidence to be necessary and sufficient? Some may be concerned about the two links 

in the evidence trail that are only informally proven: the link between the security model 

and the written security policy and the link between the code and the FTLS. But if 

evaluators are looking to bolster the product’s assurance level with CM, their efforts are 

fundamentally misguided. CM consists of human processes and procedures layered on 

top of complex, low assurance software running on low assurance operating systems. 

Expecting processes, procedures, and low assurance software to provide assurance that 

evaluators will not give to semi-formal proofs is like relying on a hotel’s excellent 

management of their safe’s keys to provide assurance when the safe itself is made of 

cardboard. 

Is CM required because evaluators believe that CM is the best way for a vendor to 

be able to successfully create the evidence? Clearly, the internal reason to use CM—to 

improve the overall “quality” of the product—is very compelling. Any vendor attempting 

to develop a high assurance system without CM (just as any hotel attempting to protect 

guests valuables without using a safe) would find creating the requisite evidence very 

difficult, perhaps impossible. But were a vendor able to create the evidence without CM, 

and the evidence verified the security properties of the system, it seems ridiculous for an 

external party to reject the system because the vendor’s CM processes were not up to 
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standards. If you received your jewels back after storing them with the hotel for several 

days, would you then ask the hotel to prove to you that its safe is used appropriately? No. 

You would happily put on your jewels and go about your merry way.  

So should CM still be required in high assurance evaluations? The answer is yes, 

and the reasons are practical ones based on the limitations of the evaluation process. 

Though the evidence is theoretically necessary and sufficient, in practice, verifying the 

evidence created by a high assurance system development effort is a Herculean task. Why 

is it so difficult? First of all, the size and complexity of the evidence created by typical 

high assurance systems efforts is so great that one person cannot comprehend it 

thoroughly enough to have complete confidence in its correctness. Secondly, even if one 

person were able to understand all the evidence, the amount of time it would take her to 

do this would be impractical. For example, KSOS had 50,000 lines of code in the kernel 

and another 500,000 lines performing security-related functionality [RADL03]. 

Thoroughly verifying the code correspondence for such a system could take more time 

than is practical in today’s fast-paced technology market. By the time the evaluators 

delivered their decision, the product could be obsolete.  

Furthermore, software products tend to change over time because of new 

requirements. Even if a product were to be exhaustively evaluated for release 1.0, 

exhaustively re-evaluating the entire evidence after a small change to the design and code 

would be impractical. It is more practical to simply evaluate the small changes to ensure 

that “the additions, deletions, or changes made to the Trusted Computing Base do not 

compromise the trust of the originally evaluated system” [CMTS88].  But in order to give 

the new version of the product the same rating as the previous version, the evaluators also 

have to have assurance that the previous version has not been changed—i.e. that it is the 

same product that was evaluated previously. 

C. CM’S PROPER ROLE IN HIGH ASSURANCE SYSTEM 
DEVELOPMENT 

Since evaluators’ verification of the evidence might be limited to rerunning the 

proofs and doing spot checks of the other evidence, evaluators look for other signs that 

the vendor created the evidence correctly. As described above, effective CM gives 
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vendors the best tool for creating the appropriate evidence. Though CM does not increase 

the assurance level beyond what the evidence provides, lack of appropriate CM reduces 

the assurance level. Similarly, knowing that a hotel has no safe or no procedures for using 

the safe reduces your confidence that the jewels returned to you were your real jewels. 

In addition to enabling the creation of the evidence, CM plays three other 

practical roles once the evidence and the product is created and evaluated.  

• Identify the evaluated product and its evidence. Which components 
belong to the evaluated product? There may be several sets of 
evidence that appear consistent; how does one know which set was 
evaluated? 

• Protect the evaluated product and its evidence. Once the product 
has been evaluated, it must be protected against modification or 
corruption so that it can be distributed and so that it can be 
compared to future versions. 

• Compare a distributed version to the evaluated product to ensure 
equivalence. Once the evaluated product has been distributed, the 
recipients need a way to verify that their version of the product is 
the version evaluated and thus has the reported assurance level. 

These roles do not increase the assurance of the product; they are practical roles that help 

the vendor ensure that its evaluated product does not become corrupted and can be used 

by others.  

CM is thus an important part of high assurance system development, both for 

internal purpose of enabling the creation of evidence and for the external purpose of 

impressing external parties such as customers and evaluators. 

D. CM TOOLS’ ROLE TODAY IN HIGH ASSURANCE EFFORTS 

As discussed earlier, the role of automated tools in high assurance CM was 

initially limited. People—usually with a security clearance—were responsible for 

enforcing the policies and establishing and following manual procedures. Automated 

tools assisted in limited, isolated areas, such as comparing two documents, physically 

storing the files under configuration, and tracking identification numbers of items. 

Today’s configuration management tools are capable of automating most CM 

procedures and enforcing a significant number of CM policies. Of course, just because 
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something can be automated does not mean that it should be automated. What are the 

benefits of CM automation to high assurance efforts and what are the drawbacks? How 

should one determine which aspects of CM to automate and which to keep manual? 

Automation can take different forms. Which implementations are most beneficial to high 

assurance efforts? 

At first glance, automation seems to be beneficial in most respects, for it provides 

standardization and auditability, and reduces errors caused by tedious, manual 

procedures.  

However, all of the existing CM tools have one significant flaw: they are 

themselves low-assurance software running on low-assurance operating systems. The 

tools may have features that enforce CM policies and automate CM procedures, but the 

tools’ low-assurance environments mean that their features cannot be trusted to enforce 

the policies correctly all of the time, nor to provide sufficient resistance to an attack by a 

malicious user. Thus, the tools cannot be fully trusted to create the evidence correctly, 

nor to protect, identify and compare the product once created. 

So does one throw out the tools and return to old-style CM using single-task tools 

on physically protected machines administered by cleared personnel augmented by 

manual, paper-based procedures? Not completely. One way to get the benefits of the 

existing CM tools while taking into account the low-assurance risks is to establish both 

“Everyday CM” that uses a modern tool and a “Trusted CM” which uses some of the 

traditional procedures and serves as the auditable CM process. 

1. “Everyday CM” 

The guiding principle of “Everyday CM” is to take advantage of the modern tools 

while limiting the opportunities for errors and subversion. “Everyday CM” is not just the 

engineering system’s CM. It consists of four key principles:  

a. Select the Best CM Tool 

Select the CM tool that best implements your CM procedures and enforces 

your CM policies. Chapter IV provides an overview of the feature areas of existing tools 
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that are relevant to high assurance efforts; Chapter V evaluates existing tools according to 

the different implementations of the features. 

b. Control the Tool’s Environment 

Setup, administer, and use the selected CM tool in the way that maximizes 

the likelihood of your team to successfully create the high assurance evidence. Because 

existing tools operate in low assurance environments, they lack effective mechanisms for 

fighting subversion. Thus, high assurance efforts using CM tools need to reduce the 

threat of subversion by providing other types of security around the use of the CM tool, 

like those used in past evaluated high assurance systems, including:  

• Physical security 

• Restrict access to personnel with a need to access the 
information or with an established level of trust (i.e. cleared 
or investigated personnel) 

• Maintenance of separate CM systems for high assurance 
development (i.e. work on the protection mechanisms) and 
for other development 

• Separation of the network on which high assurance work is 
being done from other networks, including, of course, the 
Internet. 

c. Treat “Everyday CM” As If It Were “Trusted CM” 

“Everyday CM” is not “just” the engineers’ CM where engineers are free 

to use whatever processes they please to deliver the goods to the “Trusted CM” team. 

Instead, the CM requirements in EAL7 should serve as a guide for “Everyday CM.” 

There should be a CM plan2, procedures to accept new and modified items, and measures 

to ensure that only authorized changes are made [COMC99]. Two important caveats are 

required, however.  

First, there are items that are under the control of the CM tool, but not 

“under CM” in the sense that the CM Plan’s policies and procedures apply to them. These 

                                                 
 

2 The creation and implementation of the CM Plan are critical to the success of the CM effort, but are 
not discussed here. A useful reference for a CM plan for a high assurance effort is the Final Evaluation 
Report for the Gemini Trusted Network Processor [GTNP95]. For an excellent step-by-step guide to 
implementing automated tools, see [DART00]. 
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items are the ones in individual developers’ workspaces and in the first few merges into 

the software version tree that represent initial testing and integration. Here, engineers can 

use whatever processes they please. The “procedures to accept new and modified items” 

only apply to configurations that are ready to be verified more formally, typically the 

items in branches close to the trunk of the tree.3 

The second caveat is in the enforcement that “only authorized changes are 

made.” The controlled environment should provide adequate protection against outsider 

subversion, but does not protect against a malicious insider. Since the tools do not 

provide reliable protecting against malicious insiders either, the confidence one can have 

in the enforcement should be measured.  

d. Deliver to “Trusted CM” 

At significant milestones, deliver the baseline developed by “Everyday 

CM” along with the baseline history to the “Trusted CM” team for verification and 

safeguarding. 

The hope is that “Everyday CM,” by following EAL7 requirements, will enable 

the developers to create the evidence successfully most—if not all—of the time.  

2. “Trusted CM” 

To counter the risk of a malicious insider who manages to overcome the 

environmental and software controls of “Everyday CM,” “Trusted CM” is required. The 

“Trusted CM” environment is more tightly controlled, has additional physical security, is 

accessable to a smaller group of people, and is completely physical separated from other 

computer systems. The only functions that the “Trusted CM” team performs are:  

• Verify and accept a baseline 

• Compare the new baselines with previous baselines to identify 
changes and verify that they are authorized and appropriate by 
using the documentation provided by the “Everyday CM” team. 

• Accept verified changes into the baseline under “Trusted CM” 

                                                 
 

3 Not all tools use this traditional branching terminology and structure, but the concepts are similar. 
See section IV. I for a discussion of how tools can be used to support different lifecycles. 
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• Be able to identify any specific baseline (e.g., the evaluated 
product and its evidence)  

• Protect the baseline from modification 

• Support others’ ability to compare a distributed version to the 
evaluated product to ensure equivalence 

Note that the last three functions are exactly the last three roles that CM plays in 

configuration management (see Section II.C).  

Whether “Everyday CM” fulfills EAL7’s requirements is a matter of debate, since 

the interpretation of “adequate measures to ensure that only authorized changes are 

made” is open to interpretation.  To provide more assurance, the “Trusted CM” is the CM 

that the evaluators will use for their evaluation; thus it too has to fulfill the requirements 

of the Common Criteria’s EAL7. When selecting an automated CM tool for the “Trusted 

CM” team, the requirements that the automated tool must support are very basic:  

• Ensure only authorized changes are made,  

• Generate system, 

• Ascertain changes between different versions, and 

• Identify all items affected by a modification. 

The “Trusted CM” establishes and maintains the baselines submitted by 

“Everyday CM.” If the “Trusted CM” team discovers some problem with the baseline 

sent to them, they will not accept it into their system and will report the issues to the 

“Everyday CM” team, which is responsible for fixing the problem.  

3. Future Work 

Future work is needed to precisely determine the appropriate interaction between 

“Everyday CM” and “Trusted CM.” Among the questions that need to be answered are: 

• In what format and through what method should the Everyday CM 
team provide the baseline to the Trusted CM team? 

• What metadata needs to be delivered to the “Trusted CM” team in 
order for them to do their job? In what format should the metadata 
be delivered? What history is kept with the baseline and what is 
not necessary for the purposes of the “Trusted CM” team? 
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• How involved do the “Trusted CM” team members need to be in 
the “Everyday CM” to be able to accurately verify the baseline? 
For example, how would they detect a phony change 
authorization? One could argue that the “Trusted CM” team should 
participate on the “Everyday CM” team and have total control of 
the “verified” branches.  

• How do TCB development and non-TCB development get 
integrated? 
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III. METHOD FOR CM TOOL EVALUATION 

A. EVALUATING TOOLS FOR “EVERYDAY CM”  

This thesis focuses on evaluating CM tools for use in “Everyday CM.” “Everyday 

CM” supports the day-to-day development as well as the initial stages of verification; its 

requirements are significant. Because the “Trusted CM” team is small and trusted, and 

because its activity is limited to infrequent updates of major baseline releases, the 

benefits of modern CM tools are not as significant as they are for “Everyday CM.” Thus 

any set of tools that enables the “Trusted CM” team to fulfill the basic Common Criteria 

requirements in accordance with the CM plan would be sufficient. In practice, the 

“Trusted CM” team may decide to use the same tool used by “Everyday CM” in order to 

facilitate importing and exporting. 

B. FROM CM ROLES TO CM GOALS 

The four roles CM must play in high assurance efforts, detailed above in Section 

II.C, are:  

• Enable evidence creation 

• Identify the product and its evidence 

• Protect the product and its evidence 

• Ensure distributed version is evaluated product  

The first role is the role fulfilled by “Everyday CM”. “Trusted CM” fulfills the 

remaining three roles. Table 3 below breaks down these roles by specific CM goals, most 

of which correspond to existing requirements from the Orange Book and/or the Common 

Criteria.  

Each goal has a number of threats to it, which are included in the table as well. 

Most of the threats can be characterized as subversion threats, thus their risk can be 

minimized by the environmental protections described above. 
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  CM Roles  

Goals Threats C
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1. Control all 
evidence and 
all tools 

• 3rd party tools used by vendor 
could be compromised before 
being put under CM  

• 3rd party tools could have trapdoors 
• User could use a tool (e.g., prover) 

that is not under CM to get the 
results he wants and then try to put 
fake results under CM 

X X   [COM
C99], 
[ORN
G85] 

2. Separation of 
privilege with 
change and 
commit 

• User mechanism could be 
compromised either by guessing or 
brute-forcing a password or 
bypassing access control 
mechanism 

X    [COM
C99] 

3. Maintain 
consistency 
of evidence 
mapping 

• Documents could be added without 
their appropriate upstream 
counterparts (e.g., proof of security 
model without the security model) 

• Documents could be added that 
don’t correspond to existing ones 

• Person(s) responsible for managing 
the above process could make 
errors, unintentional or malicious 

• Non-atomic commits that could 
lead to partial configurations 

X X   [ORN
G85] 

4. Only 
Authorized 
Changes 

• See threats under Goals 2 and 3. X    [COM
C99] 

5. Identify all 
components 
affected by a 
change 

•  X    [COM
C99] 

6. Implement 
CM plan 

• Person(s) do not follow manual 
parts of plan appropriately 

X X X X [COM
C99], 
[ORN
G85] 
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  CM Roles  

Goals Threats C
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7. Protect 
integrity of 
items in 
repository 

• Some data is randomly corrupted 
(i.e. availability and integrity issue) 

• Attacker is able to modify data in a 
desired way by going outside of the 
program 

• All powerful admin can modify 
items that are supposed to be 
immutable (such as committed 
items, configuration contents, or 
logs) 

X X   [ORN
G85] 

8. Protect 
integrity of 
CM tool itself 

• Unauthorized user gets access to 
machine directly 

• Unauthorized user gets access to 
machine remotely 

• User with access to system is able 
to damage or replace CM tool 
version 

X X   [ORN
G85] 

9. Clearly 
identify what 
is the TOE 

• If files were not tightly linked 
together by CM tool, user could 
substitute a file w/o detection 

• If user were to change labels, he 
could mislead other users and 
prevent the TOE from being 
identified.  

  X  [COM
C99] 

10. Generate 
TOE 

•    X  [COM
C99], 
[ORN
G85] 

11. Compare 
Versions 

• If compare doesn’t work correctly, 
might not be able to identify 
unauthorized changes that have 
been made 

X   X [COM
C99], 
[ORN
G85] 

12. TOE and all 
of its 
components 
needs unique 
identifier 

• Names could be changed 
intentionally to confuse users (e.g., 
change ‘Release_2.0_buggy’ to 
‘Release_2.0_stable’). 

X  X X [COM
C99] 

 
Table 3.   CM Roles, Goals, and Threats 
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C. FEATURE AREAS RELEVANT TO ACHIEVING CM GOALS 

CM tools represent not just a wide range of functionality, but also a wide range of 

implementation methods for each feature areas. Many feature areas and their 

implementation choices have a significant impact on a tool’s ability to support the 

achievement of the CM goals defined above. The key feature areas that can affect CM 

goals are listed in Table 4.  

Feature Areas Goals Affected 
A. Repository Architecture Goal 7: Protect integrity of items in repository 
B. Repository Structure Goal 1: Control all evidence and tools 

Goal 3: Maintain consistency of evidence mapping 
Goal 7: Protect integrity of items in repository 

C. User Authentication Goal 4: Only authorized changes 
D. Access Control 

Granularity 
Goal 4: Only authorized changes 
Goal 2: Separation of privilege with change and 
commit. 

E. Storage Of Access 
Control Information 

Goal 4: Only authorized changes 

F. Configuration Definition 
And Enforcement 

Goal 3: Maintain consistency of evidence mapping 

G. Making History 
Immutable 

Goal 3: Maintain consistency of evidence mapping  
Goal 4: Only authorized changes 
Goal 8: Protect integrity of items in repository. 

H. Change Transaction 
Atomicity 

Goal 3: Maintain consistency of evidence mapping 
Goal 4: Only authorized changes 
Goal 5: Identify all components affected by a change 

I. Lifecycle Support Goal 6: Implement the CM Plan 
J. Export/Import Goal 6: Implement the CM Plan 
K. Threaded Discussions Goal 6: Implement the CM Plan 
L. Integrity Verification Goal 7: Protect integrity of items in repository 

 
Table 4.   Key CM Feature Areas and CM Goals Affected By Each 
 

D. SELECTION OF CM TOOLS FOR EVALUATION 

There are several dozen CM tools on the market today; analyzing them all was 

beyond the scope of this thesis. The author’s goals were to select a set of tools that 

represented most of the functionality in the market today. Tools that appeared to be very 

similar in the key feature areas to tools already selected were not evaluated, since an 

evaluation would not add value to our analysis. The absence of a tool from the author’s 
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analysis does not mean that the tool is any more or less suitable for use by a high 

assurance development project. To determine a tool’s suitability, one can simply identify 

the tool’s implementation method for each of the key feature areas and add up how well 

these methods support high assurance CM goals. 

We used the following general criteria to select tools for evaluation: 

1. Market Share 

We were interested in evaluating the dominant market players given their 

influence on how software development is performed in the industry. Rational’s 

ClearCase dominates the market. MERANT is the next largest player, with several 

offerings including Merant Dimensions. See Figure 1 below. Note that most companies 

offer a range of CM tools and the chart does not include the breakdown by tool type. 

Furthermore, keep in mind that the market is dynamic and undergoing consolidation; the 

chart below represents merely a snapshat in the CM tool history.  

2000 Market Share %

Rational (Atria ClearCase)
32%

MERANT (Intersolv PVCS & Harvest 
CCC)
13%Computer Associates (Endevor)

13%

SERENA (ChangeMan)
10%

Telelogics (Continuus)
7%

Microsoft (SourceSafe)
3%

Others
22%

 
Figure 1.   CM Tool Market Share, 2000 [IDC 2000 as reported in IRCM02] 
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2. Historical Roots of the Product 

Some of the tools on the market today, such as Merant’s Dimensions, have 

evolved from older tools. Other CM tools, such as AccuRev, were created from scratch 

within the past five years. The author selected both types of tools, assuming that the 

designers of newer tools have learned from the mistakes of earlier tools and designed 

their tools differently. 

3. Range of Functionality 

All CM tools provide automated version-control functionality, but only a subset 

of them claims to provide full process and lifecycle management. Both types add 

interesting aspects to the evaluation.  

4. Open Source 

Because of the growing popularity of open source software, the author thought it 

important to include the most popular open source CM tool, CVS.  

5. High Assurance Claims 

One tool (OpenCM) claims to be designed specifically for high assurance 

development projects, and thus is clearly a good candidate for this evaluation, even 

though it is only in alpha. 

6. Unique Features 

Other tools with one or two unique features were also selected. For example, 

BitKeeper was added because of its unique repository architecture (distributed, peer-to-

peer); StarTeam was added because it supports threaded conversations and network 

encryption.  

E.  GATHERING DATA ON CM TOOLS 

To gather data on the selected CM tools, the author used a number of methods. 

She reviewed written documentation including vendor-created white papers, marketing 

materials, web sites, and manuals. Where possible, she arranged demonstrations and 

questioned sales personnel about the features and actual users about their experiences 

using the tools. Appendix A details the sources for each tool evaluated. 
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IV. CM TOOL FEATURE AREA ANALYSIS  

This section covers in detail each of the functionality areas identified in Section 

III.C, “Feature Areas Relevant To Achieving CM Goals.” Each implementation method 

of each area is described, along with its advantages and disadvantages for a vendor 

attempting to create high assurance software. Many of the disadvantages listed below can 

be mitigated by using the CM tool in a protected environment; in fact, the high assurance 

team should design the environment to protect against precisely the disadvantages 

described below. 

A.  REPOSITORY ARCHITECTURE 

The repository is the name given to the collection of files under CM. The 

architecture of the repository impacts how well the tool is able to fulfill Goal 7 (“Protect 

integrity of items in repository”). 

1. One Central Repository Plus User Workspaces  

a. Description 

Most CM tools have one central repository. Individual team members 

have their own workspaces they use for development or editing. A member copies objects 

(code, specs, etc.) from the repository to their workspace, makes changes within their 

workspace, and submits their updates back to the central repository.  

Note that the author considers CM tools with proxies as one central 

repository. Though the proxies could be considered distributed repositories, their primary 

purpose is to increase performance and they are generally assumed to be connected to the 

central repository at all times.  

b. Advantages 

Because all access control and user authorization mechanisms are in one 

location, they are easier to set up correctly, manage and audit. One central system is 

easier to harden and physically protect than many distributed systems. Furthermore, the 

state of the system and the tool can be determined directly at any point in time.  
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c. Disadvantages 

One repository means one single point of failure, though using a 

comprehensive backup process mitigates this risk. 

2. Peer-to-Peer or Hierarchical Distributed Repositories 

a. Description 

Having one central repository is not ideally suited for teams that are large, 

geographically dispersed and frequently disconnected (such as open source development 

efforts) for a number of reasons. Firstly, the small, distributed teams often work on small 

subparts of the overall projects and only need access to a subset of the repository. 

Secondly, centrally administering user authentication and access privileges for users with 

whom the administrator is not familiar is difficult. Thirdly, if there is only one repository 

and users are not able to connect to it, users’ workspaces quickly become out of date.  

Being able to create a distributed partial replica addresses most of these concerns, which 

is the reason why this architecture was created. 

b. Advantages 

Multiple repositories provide some redundancy; if one repository were to 

be corrupted or compromised, recovery would be more likely. Also, pushing the 

administration of users to the local administer who is more likely to be familiar with the 

users and their needs increases the likelihood that the authorization and access control 

will be managed appropriately. 

c. Disadvantages 

Distributed repositories are only as strong as their weakest link. If 

malicious users are able to compromise one of the replicas because of poor 

administration or by setting up an imposter replica, that replica can easily compromise 

other replicas when other replicas incorporate its changes. One of the tools that uses this 

replica architecture (OpenCM) has controls that enable users to identify a compromise 

and its source, but the tool doesn’t actually prevent the compromise from occurring. 

Unless a strong audit procedure is in place, the compromise is likely to go unnoticed. 
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B. REPOSITORY STRUCTURE 

Files, revisions, and metadata under CM must be stored. The format chosen will 

impact Goal 7 (“Protect integrity of items in repository”), Goal 1 (“Control all evidence 

and tools”), and Goal 3 (“Maintain consistency of evidence mapping”). 

1.  Use Operating System’s File System 

a. Description 

Each file or revision under CM is stored as a file in the underlying 

operating system and can be browsed through the operating system’s file system browser 

(subject to access constraints). Some tools store revisions using the RCS format, which 

stores the most current version in full and stores only the differences of previous 

versions. Some tools supplement the RCS format with additional meta-data may be 

stored in a separate file or database.  

b. Advantages 

Using the operating system’s file system makes the organization of the 

files completely transparent. This transparency reduced a malicious user’s ability to use a 

backdoor in the CM tool to hide or change certain files or types of files without detection. 

Also, the operating system mechanisms for safeguarding files (e.g., access control lists, 

checksum tools) can be used; though the OS mechanisms are not fail-proof, they have 

been more thoroughly tested than a CM’s tool proprietary mechanisms. Furthermore, 

corruption of the meta-data information does not corrupt the files themselves. The 

organization of the files still would provide basic information about the configuration and 

versions.  

c. Disadvantages 

Any compromise of the host system (e.g., a buffer overflow that disables 

access control mechanisms) provides immediate, transparent access to the CM files. 

Because the file system is in such widespread use, the number of known attacks against it 

is continually growing. Using the operating system’s file system also limits the 

granularity of the access control mechanism to that of the operating system (i.e. read, 

write, execute), when many situations may want finer grain controls (e.g., “write access 

only if file is not frozen”). Most seriously, careless or malicious users with administrative 



 

 34 

privileges can open and change the files under CM directly from the file system browser 

(or add a file to a folder in the CM hierarchy), rendering the CM tool’s state information 

inaccurate in a subtle, perhaps indiscernible way. 

Also, RCS has a number of vulnerabilities, including the lack of 

checksums. 

2. Other File System or Database 

a. Description 

Each file under CM is stored in a proprietary file system of the CM tool 

that is hidden from the operating system. To understand the file structure, the files need 

to be viewed through the CM tool’s browser.  

b. Advantages 

Because the files are stored in a proprietary file system, their immediate 

structure and contents is not available to someone who gained access (legitimately or 

illegitimately) to the CM tool’s data file. This provides some deterrence against valid 

users changing the files directly through the file system, since they must go through the 

tool to make any meaningful changes to the files. Also, because the tool manages the file 

system, the tool can provide finer grain access control than what the operating system 

provides. 

c. Disadvantages 

Even if the CM tool uses a proprietary file system or database, the data is 

ultimately stored as a file in the operating system’s file system and thus is reliant on the 

operating system’s enforcement of access control. Thus this structure still has some of the 

disadvantages listed above for: “1. Use operating system’s file system.” In addition, 

motivated users are unlikely to be deterred by the complexity of the data storage system; 

they would spend the time and energy required to understand how the data is stored and 

how to manipulate it meaningfully.  

Another drawback of using a proprietary file system or database is that the 

availability of robust recovery tools is typically smaller for an application specific file 

structure than for common, widely used operating systems.  
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3. COTS Database 

a. Description 

Some CM tools store both their files and their metadata in commercial, 

off-the-shelf database software products such as Oracle, Sybase, and SQL Server.  

b. Advantages 

The advantages that come with a powerful database product include 

querying and reporting capability that can be used for audit purposes, atomic transactions 

(covered as a separate feature area below), and finer-grained access control than provided 

by a file system.  

c. Disadvantages 

Since databases can be accessed via multiple means (e.g., web scripts, 

direct SQL, remote connections), using a database includes many of the disadvantages of 

using the operating system’s file system: malicious or lazy users can circumvent the CM 

tool and access the data in the database directly, making changes that aren’t logged and 

tracked appropriately. Also, as we found with using the operating system’s file system, a 

vulnerability discovered in the database software product may leave the entire CM data at 

risk. 

C. USER AUTHENTICATION 

User authentication involves setting up users and groups and then authenticating 

them when they attempt to connect to the CM tool. Solid user authentication is relied 

upon for almost everything, but especially for Goal 4 (“Ensure that only authorized 

changes are made”).  

1. Use Underlying Operating System’s User Authentication 

a. Description 

Many tools leave user authentication to the operating system. If a user is 

logged in, the tool considers them authenticated and merely uses their user login as their 

username for the CM tool. 
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b. Advantages 

Just as using the operating system’s file system to store individual files 

increases transparency and decreases the likelihood of a CM-tool based backdoor, so 

does using the operating system’s user authentication mechanism. Most operating 

systems allow administrators to enforce principles such as good passwords (e.g., 

requiring passwords to be at least a certain length, requiring users to change passwords 

on a regular basis) and least privilege (e.g., granting users the least amount of privilege 

that is required by their role). Some operating systems also allow augmentation of user 

passwords with other authentication methods that rely on something the user has (e.g., a 

smart card) and something the user is (e.g., biometrics). 

c. Disadvantages  

But the strength of the user authentication is only as strong as the features 

the operating system provides and as the administration. An administrator who doesn’t 

actively tighten down the authentication mechanisms leaves the system and the CM tool 

with weak user authentication. We would hope that a CM tool being used by a team 

building a high assurance product would be pro-active in maximizing the power of the 

operating system’s authentication mechanism.  

One limitation of using the operating system’s own mechanism is that the 

tool is limited to managing the kinds of objects that the file system knows about—namely 

files and directories. The tool would not be able to restrict a user’s access to part of a file, 

for example. 

Another drawback is that giving users accounts on the system itself may 

provide them with additional ways to gain illegitimate access to other resources on the 

system besides the CM tool. 

2. User CM Tool’s Own Authentication Mechanism 

a. Description 

Some CM tools have built their own user authentication mechanism. The 

tool itself gives users names and logins. Software administrators control their access to 

the tool. 
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b. Advantages 

When the CM tool manages user authentication, users do not need to have 

general access to the system on which the tool is running. This limits their privilege to the 

tool itself (baring any vulnerabilities in the tool), and thus reduces the damage they can 

do to the tool and its data.  

c. Disadvantages  

Implementing a rich authentication mechanism is not a trivial task. Given 

that most CM tools were built on the assumption that team members are trustworthy, the 

range of functionality provided by internal authentication is quite weak. Strong password-

based authentication requires features such as password length minimums, password 

complexity, restrictions on repeated guessing of passwords, ability to check the strength 

of passwords, logging of all log-in attempts, prevention of log modifications, and 

protection of stored password hashes. Most CM tools choosing to implement their own 

authentication do not include all of these features. Furthermore, because the CM tool 

itself and its data must rely on the underlying operating system’s access control 

mechanism at some level, CM tools end up with many of the disadvantages described 

above. 

3. Use Public Key Encryption, Managed by CM Tool 

a. Description 

One method of implementing user authentication is to use public key 

encryption. For a good introduction to public key encryption, digital signatures, and 

certificates, see Netscape’s “Introduction to Public-Key Cryptography” [PKCR98]. 

b. Advantages 

This is a special case of the tool managing user authentication, so it has all 

the advantages described above for using the CM tool’s own authentication mechanism 

(Section IV.C.2). Using public key encryption may also provide a mechanism that is 

stronger than the operating system’s authentication. 
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c. Disadvantages  

All the issues around public key encryption are issues here as well, 

including safeguarding of private keys, maintaining the integrity of public keys, and 

managing the revocation of compromised keys. 

D. ACCESS CONTROL GRANULARITY 

Access control granularity describes the ways in which an administrator can grant 

or limit a user’s or group’s access to objects in the CM tool. The granularity must be at a 

level that allows the tool to be used to fulfill Goals 4 (“Only Authorized Changes”) and 2 

(“Separation of privilege with change and commit”). 

1. Definable at the Repository Level 

a. Description 

Users are either granted or not granted access to a specific repository. 

b. Advantages 

None. 

c. Disadvantages 

In order to ensure that only authorized changes are made and that the user 

that makes the change is not the one that commits the change, administrators need to be 

able to grant more granular access control. 

2. Definable at the Branch Level 

a. Description 

Users are either granted or not granted access to each branch in a 

repository. To support ensuring that only authorized changes are made and to support 

separation of privilege, branches can be set up to represent different hierarchical 

promotion levels (e.g., development, testing, verifiedByPerson1, verifiedByPerson2, and 

released). Access to each branch can be restricted to only the users who are intended to 

approve promotion for that stage of the process.  

b. Advantages 

Using branches is easy to implement and audit. 
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c. Disadvantages 

But branch-level access control may not allow for enough granularity of 

control at the lower levels to help ensure that the evidence is created correctly.  

3. Complex Access Control Based On Configuration State and User 
Roles 

a. Description 

Tools that include significant lifecycle functionality and have a notion of 

user roles allow access to be defined at a state and/or role level. For example, a document 

may be locked for writing until a user in the Approval Role “approves” it and moves it to 

a new state. Then users in the Development Role may write to it as long as it is in the QA 

state. These access rights can also be limited to a specific design part of the system being 

built.  

b. Advantages 

Teams are most likely to be able to enforce a “least privilege” policy using 

tools that have complex access control based on configuration state. The state and 

relationship rules most easily represent the types of restrictions that high assurance teams 

want to put on their teams. 

c. Disadvantages 

Because the mechanism is more complex, the likelihood of administrator 

errors is increased. 

E. STORAGE OF ACCESS CONTROL INFORMATION 

Access control information must be stored in order for the tool to enforce it. The 

integrity of the access control information is critical for maintaining Goal 4 (“Only 

Authorized Changes”). If a malicious or even lazy user can change the access control 

information, there is no way the tool can achieve Goal 4.  

1. Stored In File 

a. Description 

Some tools store the access control information unencrypted as a simple 

file which the tools checks before allowing access to a specific area of the tool. 
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b. Advantages 

None. 

c. Disadvantages 

Anyone who is able to gain illegitimate access to the file is able to 

manipulate access controls without being detected. Administrators must be trusted to 

appropriately handle the access controls. If an administrator’s authentication mechanism 

is compromised (e.g., password guessed), no assurance is provided. 

2. Stored In Digitally Signed Object Structure  

a. Description 

The access controls are digital signed using the repository’s private key. 

Any change to the access controls by someone other than an administrator in the 

repository can be detected because the signature won’t match (i.e. specifically, the hash 

in the digital signature won’t match the hash of the compromised access control 

information). 

b. Advantages 

Anyone who is able to gain illegitimate access to the access control files 

would not be able to change them without being detected. 

c. Disadvantages 

Administrators must be trusted to appropriately handle the access 

controls.. 

3. Stored Encrypted In Database 

a. Description 

Tools that use a COTS database to store items under CM often encrypt the 

access control information and store it in the database as well. The author was not able to 

determine what type of encryption such tools used, nor how they managed the keys. 

b. Advantages 

Because the information is encrypted, anyone who is able to gain 

illegitimate access to the access control files in the database would not be able to 

manipulate the information usefully. 
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c. Disadvantages 

Administrators must be trusted to appropriately handle the access controls. 

If an administrator’s authentication mechanism is compromised (e.g., password is 

guessed), no assurance is provided. 

F. CONFIGURATION DEFINITION AND ENFORCEMENT  

A configuration is a set of files logically belonging together. For example, the 

latest version of a security policy, the related security model, and the related proof are 

considered part of the same configuration. When the model and proof are updated, the 

new model and proof, plus the original security policy, are considered a new version of 

the same configuration.  

Goal 3 (“Maintain the consistency of evidence mapping”) depends on the tool’s 

ability to identify the elements of a configuration and to maintain them as a coherent set. 

For high assurance development efforts, the requirements are quite significant. A 

configuration should include all of its appropriate upstream counterparts (i.e. all related 

documents that are typically created before the given document), and all members of a 

configuration should correspond to each other formally (e.g., the proof should be a proof 

of the model in the configuration; the model in the configuration should be a 

formalization of the policy in the same configuration). Ideally, the CM tool would help 

enforce these rules. 

The code correspondence stage of formal high assurance efforts requires lines of 

code (i.e. parts of a file) to be linked to lines of the formal specification (i.e. parts of 

another file). None of the tools allow you to define relationships within the file contents. 

1. Each File Has Its Own Separate Version History; Weak Support For 
Grouping Files 

a. Description 

Each file develops a version history of its own. In order to figure out 

which files were committed at the same time; one has to look for all files that were 

committed by the same user at the same date and time with the same comment. Tags can 

be assigned to label a set of files as well.  
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b. Advantages 

None. 

c. Disadvantages 

Subversion of what users consider a logical configuration is fairly easy for 

a malicious or careless user. The user could manipulate date/time stamps and make a file 

appear to be part of a configuration to which it doesn’t belong. Since tools with this 

implementation tend to have non-atomic transactions, a tagged configuration may not 

represent the complete configuration.. Furthermore, there is no support for ensuring that a 

configuration has the right type of files in it (as described above). 

2. Set Of All Files at a Given Moment In Time 

a. Description 

These tools track files that are part of the same configuration using 

transactions. Files that are committed by a user together are bond together via a label or a 

transaction number. The tool maintains history on all changes made to these files. Many 

tools with this implementation are loosely integrated with a requirements/bug tracking 

tool. The integration usually provides a rudimentary way to provide more information 

about a set of changes (such as “in response to bug 123”) 

b. Advantages 

Being able to identify changes to sets of files is important for achieving 

Goal 3. Often in high assurance development efforts, team members need to verify that a 

change in one file (e.g., change in specification) resulted only in a change to specific files 

(i.e. those related to the specification) and not to changes in other files (i.e. those not 

related to the specification). Unexpected changes in unrelated files might be evidence of a 

backdoor inserted by a malicious developer, so being able to track all the files changed at 

one time is very important. 

Integration with requirements/bug tracking tools improves the information 

available about a change, making it more likely that an unauthorized change would be 

noticed. 
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c. Disadvantages 

The primary shortcoming of this implementation method is that there is no 

way to specify different types of relationships between files in a set. Knowing that the 

files belong together is helpful, as described above, but as the set of files grows, the 

relationships within the set become more complex. For example, a code file might be 

related to only one file in the formal specification. These tools do not support 

relationships within a set of files.  

3. Set Of All Files and Their Related Changed Documents and State 
History 

a. Description 

Tools that have full lifecycle support usually include a mechanism for 

defining and relating files in richer ways than simply grouping them together into sets. 

One way this is implemented is through default relationships, such as “in response to” 

and “affected by”, and user-defined relationships, such as “proves”. Users can establish a 

relationship between files or between a file and a change document (see Lifecycle 

support section). 

b. Advantages 

Being able to define precise relationships helps document a development 

effort, helping the development team to better understand complex sets of files and 

outsiders to more quickly learn the intricacies of a code base.   

c. Disadvantages 

The additional complexity of the CM tool itself to support relationships 

increases the likelihood of errors in the enforcement of such relationships. Also, 

establishing these types of relationships adds some complexity to configuration set up 

and maintenance, but if the relationships were to be maintained manually anyhow, then 

automating it is not a significant disadvantage. 

G MAKING HISTORY IMMUTABLE 

One key role of a configuration management software tool is to track history 

regarding a development project. A CM tool should be able to answer questions like, 

“What did this set of files look like on May 29?” and “What version of file X was used in 
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release 1.02?” History should be protected from modification or the answers to these 

questions become unreliable and the tool becomes unable to achieve Goals 3 (“Maintain 

Consistency Of Evidence Mapping”), 4 (“Only Authorized Changes”), and 8 (“Protect 

Integrity Of Items In Repository”). Tools provide different types of protection against 

information that should be immutable such as file contents, commit history, and user 

access information. 

1. Limit Changes To Administrative Users  

a. Description 

Some tools restrict changes to immutable content to the highest level of 

administrator user, using the tool’s user authentication mechanism to enforce this 

restriction (see “IV.C. User Authentication” above). These users can then change history 

in subtle ways that would not be detectable by team members. A team could set the 

policy that the administrator is not supposed to change any of the historical data, but the 

tool would not enforce this policy. 

b. Advantages 

None. 

c. Disadvantages 

Administrative users may not be trustworthy. Administrative users may 

delete or change historical data by mistake. Furthermore, if a malicious user compromises 

the access control mechanism, that user would be able to modify or delete the entire 

history. 

2. Stored In an Append-Only Database 

a. Description 

Some tools store immutable content in a proprietary append-only database. 

Not even administrative users can change items (e.g., files, transactional history). 

b. Advantages 

The append-only database enforces a mandatory access control policy of 

“no rewrite” and provides more assurance than a discretionary access control policy that 

allows administrative users to change the data. 
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c. Disadvantages 

The append-only database resides in the file system of the operating 

system on which the CM tool is running; thus it is susceptible to compromise as 

described above in IV.B., “Repository Structure.” Furthermore, if the database were to 

become corrupted, the “append-only” nature would likely prevent an administrator from 

being able to fix the problem. 

3. Enforced by Cryptographic Hashes and Digital Signatures 

a. Description 

Another implementation is to use public cryptographic techniques to 

verify that the immutable content has not been changed. First, the content is named by its 

cryptographic hash. Since the hash is unique (discounting the very rare chance of a 

collision), any change to the content will result in a mismatch between its name and its 

contents – a clear sign that the content has been compromised. The hash is protected from 

change with the digital signature of the server on which the contents was created. Note 

that the content itself is not actually protected from change by either the hash or the 

signature, but since the signature protects the hash, re-computing the hash and comparing 

it to the protected hash would detect any change to the original content.  

b. Advantages 

This mechanism will effectively detect changes to frozen content, and 

could be used in conjunction with one of the other protection implementation methods 

above to create a strong enforcement of frozen content.  

c. Disadvantages 

Because this implementation method does not actually protect the content 

from change, it has the same disadvantages of whatever method is used to do the 

protection. However, its ability to recognize a change reduces the seriousness of these 

disadvantages. In addition, because this method relies on public key encryption, it has the 

disadvantages listed above in IV.C.3, “Use Public Key Encryption.” 
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H. CHANGE TRANSACTION ATOMICITY 

A typical operation of a user of a CM tool is to commit a “change” to the 

repository. A “change” to a user consists of a set of changed files that fulfill the 

requirements of a change request. Being able to identify all the components affected by a 

change is Goal 6.  

To the CM tool, committing the change means copying the files from the user’s 

workspace to the appropriate place in the repository hierarchy. Occasionally, while the 

software tool is performing the commit, some sort of error occurs that prevents the tool 

from completing the commit (e.g., the network between the user’s machine and the server 

is broken, CM tool tries to write to a bad sector). Different CM tools respond to this 

situation differently.  

1. Not-Atomic 

a. Description 

If the tool does not support atomic transactions, then some of the files may 

be committed and others may not. The reason the tools do this is historic. Older CM tools 

considered the file to be the base unit for CM (see IV.F.1, “Each file has its own separate 

version history; weak support for grouping files”). When customers wanted to be able to 

commit multiple files, the tools added the ability to do so by doing a series of sequential 

commit of each file. 

b. Advantages 

There are no advantages from the perspective of a high assurance team. 

c. Disadvantages 

Clearly, committing some subset of files of a change can leave the 

repository in a state that violates the consistency of the evidence mapping (Goal 3) and/or 

represents an unauthorized change (Goal 4).  Malicious users can craft an error that 

causes an incomplete commit specifically to manipulate the state of the repository. 
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2. Atomic 

a. Description 

If the tool supports change transactions as completely atomic transactions, 

no files would be committed and the user would have to redo the commit. 

b. Advantages 

Guaranteeing atomicity ensures that anyone looking at a version of the 

repository, sees a consistent set of data, and supports Goals 3 and 4.  

c. Disadvantages 

None. 

I. LIFECYCLE SUPPORT 

CM tools provide varying degrees of lifecycle support and even define the scope 

of the term lifecycle differently. Some tools providing lifecycle support do support the 

full lifecycle of activities of a development project (e.g., Requirements Development, 

Design, Product Development, Test, and Release). Other tools making the same claims 

mean only that they have mechanisms to support the sequence of states through which a 

file (or set of files) of programming code passes through between creation and release 

(e.g., development, testing, release 1, bug fixing, release 1.).  

High assurance development projects need to exercise control over the entire 

lifecycle of activities (i.e. the first interpretation), not just the activities between 

development of code and release (i.e. the second interpretation above).  

Clearly, there are manual ways outside of CM tools to control the lifecycle; in this 

section we focus on the ability of CM tools to support lifecycle control. 

1. Using Branch Hierarchy; May Include Links to a Requirements 
Tracking Tool 

a. Description 

The most basic way to support lifecycles in CM tools is to set up the 

branching hierarchy to represent the lifecycle states through which files or configurations 

must pass. Each state becomes a branch. For example, if the security model goes through 

states: “Draft,” “Reviewed Draft,” “Verified By Person 1,” “Verified By Person 2,” and 
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“Final,” then the “Final” branch is the core branch and off of the “Final” branch you 

create a “Verified by Person 2” branch, off of which you create a “Verified by Person 1” 

branch and so on. You implement the concept of “approval” by limiting the ability to 

promote a file from one branch to the next to the person with approval authority.  

Different document types in a high assurance development project (e.g., 

security policy, security model, model proof, code) may have different lifecycles. But if 

you want the CM tool to enforce the links between these different document types (i.e. 

maintain them in the same configuration), then the lifecycles of each must have the same 

end states (i.e. the branches representing each must merge at some level before the last 

stage). For example, the security model and the code could merge at the “Verified by 

Person 1” branch.  

Many of these tools claim to be integrated with requirements or bug 

tracking tools. In reality, the tracking tools and the CM tool tend to have superficial links, 

created after both tools were designed and implemented. The lack of tight integration 

means that the tools tend to have completely distinct user authorization models and 

access control abilities. 

b. Advantages 

All CM tools provide some branching mechanism; hence all tools provide 

at least rudimentary lifecycle support. Implementing the lifecycle in the tool (opposed to 

manually) means that the entire history of when files were promoted to what stage by 

whom is captured. Furthermore, using the tool to enforce the lifecycle means that the 

same process will be used for all files, increasing repeatability and ability for audit.  

The link to the requirements tracking tool can be useful as long as its 

shortcomings in enforcing any type of assurance are recognized. 

c. Disadvantages 

In most tools, branching was created to support situations where part of 

the code needed to evolve in a different way than the mainline of code, for example to 

support a separate platform or a bug fix. Using branches to represent stages in a 
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development lifecycle is quite different, and may be very awkward to implement with 

some tools. 

The real lifecycle for high assurance projects consists of more than 

sequential states where documents can be promoted with approval from the right person. 

For example, there may be a set of questions that must be answered and recorded before a 

document may be promoted to the “Verified by Person 1” stage. Since the 

implementation method using branches cannot represent this, the full lifecycle cannot be 

fully represented simply by using branches. As a result, lifecycle enforcement would be 

limited to manual checks to ensure that processes are being followed and repeatability 

would be based on the quality of the manual procedures and the discipline of the people 

following the procedures. 

2. Lifecycle Stages With Associated Change Documents and Rules 

a. Description 

Tools that claim to support the full system lifecycle provide significantly 

more functionality. One tool describes its lifecycle support as follows: 

A lifecycle or workflow is a series of activities done in a specific 
order to enact change in your system. A lifecycle is made up of 
“states,” blocks of activities that describe a major area of work. A 
typical development lifecycle may consist of the following states: 
Requirements Development, Design, Product Development, Test 
and Release. Each state contains entry and exit criteria, i.e., 
reasons for entering and exiting a state. Typically, a state cannot be 
considered finished until someone has approved the work 
activities, indicating that the work was accurately and effectively 
completed [PVCS03, Technical Brief]. 

You can use the exit and entry criteria, as well as the rules to represent 

complex requirements that you maintain in your real lifecycle process. For example, in 

order to enter a “Development” state, you can require the user to specify the 

Requirements Document that s/he is responding to. The Requirements Document and the 

code that the user creates are then linked together. Before the user’s code can exit the 

development state and move to test, you can require the developer to fill out a “Changes 

Made” form, the manager to fill out an approval form, and the tester to link the changes 
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to the appropriate test files to be run against it.  Once completed, these forms become 

linked together with the requirements and the code for future review and audit. 

b. Advantages 

This implementation method allows you to model more of your lifecycle 

process in the tool and thus provides more standardization, repeatability, and auditability. 

c. Disadvantages 

Setting up the complex lifecycle process appropriately, because of its 

complexity, may be difficult. And there is no way to confirm that the process is correct. 

Also, the CM tool code that implements such rich lifecycle support is complex. Increased 

complexity increases the likelihood of errors in the enforcement of the lifecycle.  

J. EXPORT/IMPORT  

Because the author believes that high assurance projects require both “Everyday 

CM” and “Trusted CM” in their CM Plan, the CM tool used for “Everyday CM” must 

have sufficient exporting and importing capabilities to achieve Goal 6 (“Implement the 

CM Plan”). Specifically, tools must be able to export the proposed baseline and changes 

to the “Trusted CM” team in an acceptable format and will need to able to import files 

from the “Trusted CM” team for modification of an accepted baseline.  

The conditions under which the export/import functionality would be used in a 

high assurance project are an area for further research. Thus the detail below focuses on 

the export of the files themselves (not metadata), and should be considered merely as a 

starting point. 

1.  Straight Copy From File System or Database 

a. Description 

For tools that store CM files in the operating system’s file system or in a 

standard database management system, exporting and importing would use the file 

system’s move function or the database system’s export function. 

b. Advantages 

These functions have been used extensively for years by a very large user 

base; basic errors are unlikely to still be unknown.  
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c. Disadvantages 

The functions could be replaced with subverted ones, but by checking 

checksums with known clean versions, the threat can be minimized. 

2. Import/Export Function In Tool 

a. Description 

Tools that have a proprietary way of storing the files under CM must also 

have a proprietary way of translating between that format and a more standard format, 

such as directories and files in the operating system’s file system. 

b. Advantages 

None. 

c. Disadvantages 

Because the functions are not as widely used, they are more likely to have 

unidentified bugs. Checking for subversion is difficult or impossible. 

K. THREADED DISCUSSIONS 

Threaded discussions are a familiar fixture on the Internet. One of the tools 

evaluated provides a mechanism for threaded discussions (StarTeam). The definition of a 

threaded discussion in StarTeam’s user manual [STWB03] is: 

A series of responses to a posted topic. Each conversation forms a topic 
tree with the topic as its root. It is called a threaded conversation because 
the tree hierarchy indicates whether a response is a reply to the topic or 
another response to that topic. By reading each response in a thread, one 
after the other, you can see how the discussion has evolved. 

Threaded discussion can help a high assurance effort by providing another source 

of documentation about changes to the system. Since part of the CM Plan is to show “that 

the acceptance procedures provide adequate and appropriate review of changes to all 

configuration items,” threaded discussions can help Goal 8 (“Implement CM Plan”).  

1.  No Threaded Discussions 

a. Description 

No functionality for integrated threaded discussions 
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b. Advantages 

None. 

c. Disadvantages 

Tool-based documentation of a change is limited to the user’s commit 

comment, or, in tools that support lifecycle management, the contents of an electronic 

customizable “Change Form.” These are important sources, but threaded discussions 

provide additional valuable information. 

2.  Threaded Discussions 

a. Description 

Some functionality for integrated threaded discussions 

b. Advantages 

Threaded discussions capture first-hand, time-stamped written discussions 

between team members about changes. Just as emails provide a trail of evidence that 

phone conversations do not, threaded discussions provide a level of detail that short 

comments and responses to standardized fields do not. Discussions are no substitute for 

either the comments or the forms, but they are an excellent addition to those two more 

formal sources. One additional benefit of threaded discussions is that someone who is 

familiar with the team members and the issues is likely to be able to detect a discussion 

that has been completely fabricated.  

c. Disadvantages 

None. 

L. INTEGRITY VERIFICATION 

In a high assurance project, the CM tool should help protect the integrity of the 

items in the repository (Goal 7) against both random errors (e.g., hardware failures) and 

malicious errors. 

1.  No Integrity Verification 

a. Description 

Most tools provide no specific integrity mechanism. 
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b. Advantages 

There are no advantages to not providing an additional source of integrity 

and authenticity verification.  

c. Disadvantages 

Less assurance. 

2.  Integrity Verification Using Hashes 

a. Description 

One of the tools (BitKeeper) stores checksums for each file and revision. 

b. Advantages 

BitKeeper summarizes the advantages of this method in [BKWB03]: 

BitKeeper checksums each revision file and each delta of each 
revision file. […] So far, these checks have found multiple bad 
memory DIMMs, many NFS corruptions, Linux/XFS corruptions, 
and a few SPARC/Linux cache aliasing bugs. All of those errors 
are likely to go undetected in an RCS-based system such as 
Perforce, CVS, etc. RCS has no built-in integrity checks and is 
made worse by a file format that prevents the detection of the bad 
data until the system attempts to retrieve a version of the file 
containing the corrupted section of the version control file.  

c. Disadvantages 

Because the hash itself is not protected, this style of integrity verification 

will not detect changes made by a malicious user. A malicious user could change the hash 

to match the changed file. 

3.  Integrity Verification Using Protected Hashes 

a. Description 

One of the tools (OpenCM) provides an integrity check for items under 

CM by computing the cryptographic hashes of each item and protecting the hash with the 

digital signature of the person submitting the object. 
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b. Advantages 

Using hashes does not prevent integrity loss, but it does enable users to 

verify that the integrity of an item has not been compromised. Clearly, being able to 

verify the integrity of items under CM is valuable to CM teams. 

c. Disadvantages 

There are no disadvantages from a high assurance perspective in having a 

way to verify the integrity of an item. 

M. OTHER CM FEATURES TO CONSIDER 

The evaluation results focus on feature areas that are the most relevant to high 

assurance projects looking for a CM tool. However, these are by no means the only 

important feature areas. Other areas are critically important to the success of all software 

teams’ configuration management processes, including (partially from [DART00]): 

• Stability 

• Performance 

• Available support 

• Amount of administration required for set up and maintenance 

• Amount of computer power required for set up and maintenance 

• Cost 

• Vendor reliability and viability  

• Platforms supported 

• Fault tolerance 

• Scalability (if applicable) 

• Customizability 

• Usability 

Any project evaluating CM tools would be wise to evaluate each tool in each of 

these areas. 
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V. CM TOOL EVALUATION 

A. CM TOOL DESCRIPTIONS 

A fuller description of each tools evaluated is included in Appendix A. 

1. AccuRev 

AccuRev is a newer CM tool that prides itself on its architecture that supports 

very flexible branching (called “streams”) and enforces atomic transactions. It has 

minimal process management support. 

2.  BitKeeper 

BitKeeper’s most notable feature is its distributed, peer-to-peer replica 

architecture. Linus Torvalds, Linux’s leader, started using BitKeeper for Linux in 2002 

[BKLX03]. BitKeeper is free to open source efforts, but such efforts must provide 

BitKeeper with its metadata within 21 days of its creation and must respond to a request 

to make its repositories available to the public with 15 days of BitKeeper’s request.[ 

BKWB03, “Free Use License”]. 

3.  ClearCase 

ClearCase is the market leader and provides change management functionality in 

addition to the standard version control. ClearCase is part of a suite of products from 

Rational that implement Rational’s “best practices” software development methodology, 

Unified Change Management. 

4.  CVS 

 CVS, a free, open source tool, is perhaps the best-known CM tool. Even 

though it has some serious shortcomings, CVS is used for dozens of open source projects, 

including Apache WWW server, FreeBSD, NetBSD, OpenBSD, GNOME, and Xemacs 

[CVSW03]. Subversion is the open source effort intended to replace CVS [CVSS03]. 

5.  OpenCM 

OpenCM, another free, open source tool, was created to fulfill the requirements of 

the John Hopkins team creating EROS, a high assurance operating system. Their unique 

requirements included the ability to support a geographically distributed and often off-
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line development team, as well as the ability to provide more assurance than existing CM 

tools. The EROS team wanted more assurance in the areas of provenance tracking and 

integrity checking across potentially hostile replicates [OPAI02]. To provide the 

additional assurance, OpenCM employs cryptographic hashes for object naming and 

public key encryption for user and server authentication.  

6.  Perforce 

Perforce is a popular tool in the academic community, perhaps because the 

company provides the tool for free to open source efforts (efforts that provide 

unrestricted read-only access and release their software under one of three GNU licenses) 

[PFWB03, “Open Source Contract”]. Perforce is known for its simple architecture and 

unique branching model that promotes outwards instead of inwards towards the tree’s 

trunk.  

7.  Merant Dimensions 

Merant now sells Dimensions, which was originally marketed as “PCMS 

Dimensions” by a company named SQL Software. Merant Dimensions (previously 

“PVCS Dimensions”) is one of the CM tools with a rich set of process management 

features. Note that PVCS Professional, also from Merant, has a completely different 

source and history; it is not just a scaled down version of Dimensions. Many government 

agencies and government contractors use PVCS products. The US Navy has an enterprise 

license for PVCS products. 

8.  StarTeam 

StarTeam is another high end CM tool. StarTeam has integrated threaded 

discussions and provides the option to encrypt data sent between client and server. 

B. TOOLS BY FEATURE AREA AND IMPLEMENTATION METHOD 

Table 5 below shows how the tools implement each feature area, according to the 

author’s sources at the time she performed the research (see List of References). Each 

implementation has a risk rating based on the advantages and disadvantages summarized 

in Chapter IV. The risk rating is a quantitative estimate of the amount of opportunity 

(1=Minimal, 2=Some, 3=Significant, 4=Serious) the given implementation creates or 
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allows for exploits and errors that would negatively affect the likelihood of a team being 

able to successfully create the necessary evidence. A tool’s total risk rating is simply the 

sum of the ratings from its component feature areas. 

Remember that these ratings do not take into account the protected environment 

in which the tools should be employed, as described in II.D. above. High ratings reflect a 

lack of inherent risk mitigation, and represent the areas most critically in need of 

protection by mechanisms outside of the CM tool. 
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Total Risk 
Rating 

Total Risk Rating Minimum/ 
Maximum 

11/
37

24 25 25 31 19 23 24 23

One central repository plus user 
workspaces 

1 1  1 1  1 1 1 A. Repository 
Architecture 

Peer-to-peer or hierarchical 
distributed repositories 

24  2   2    

Use operating system’s file 
system 

2    2  2   

Other file system or database 3 3 3 3  3  3  

B. Repository 
Structure 

COTS database 2        2 
Use underlying operating 
system’s user authentication 

2  2  1  1 1  

User CM tool’s own 
authentication mechanism 

3 3  3     3 

C. User Authen-
tication 

Use public key encryption, 
managed by CM tool 

1     1    

Definable at the Repository 
Level 

4    4     

Definable at the Branch Level 2 2 2   2 2   

D. Access 
Control 
Granularity 

Complex access control based 
on configuration state and user 
roles 

1   1    1 1 

                                                 
 

4 The rating is for the peer-to-peer or hierarchical distributed architecture. If the tools are used with 
only a central repository, the risk rating would be the same as that of the central repository. 
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Stored in file 3 3   3  3   
Stored In Digitally Signed 
Object Structure 

1     1    
E. Storage Of 

Access 
Control 
Information Stored Encrypted In Database 2  2 2    2 2 

Each file has its own separate 
version history; weak support 
for grouping files 

4   4 4     

Set of all files at a given 
moment in time 

2 2 2   2 2   

F. Config-
uration 
Definition 
And 
Enforcement 

Set of all files and their related 
changed documents and state 
history 

1       1 1 

Limit Changes To 
Administrative Users 

4  4 4 4  4 4 4 

Stored In An Append-Only 
Database 

2 2        

G. Making 
History 
Immutable 

Enforced By Cryptographic 
Hashes And Digital Signatures 

1     1    

Not-Atomic 4    4   4 4 H. Change 
Transaction 
Atomicity 

Atomic 0 0 0 0  0 0   

Using branch hierarchy 3 3 3  3 3 3   I. Lifecycle 
Support Lifecycle stages with associated 

change documents and rules 
1  1 1    1 1 

Straight copy from file system 
or database 

1 1 1  1  1   J. Export/ 
Import 

Import/Export function in tool 2   2  2  2 2 

No threaded discussions 2 2 2 2 2 2 2 2  K. Threaded 
Discussions 

Threaded discussions 0        0 

No integrity verification 3 3  3 3  3 3 3 

Integrity verification using 
hashes 

1  1       

L. Integrity 
Verification 

Integrity verification using 
protected hashes 

0     0    

 
Table 5.   CM Tools Evaluation Summary 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. DISCUSSION OF EVALUATION RESULTS 

The evaluation demonstrates that most tools have comparable risk ratings (23-25) 

if deployed in an unprotected environment, with the exception of OpenCM, which 

presented the least risk at 19, and CVS, which presented the most at 31.  

OpenCM minimized risk most effectively through its use of public key encryption 

in the areas of user authentication, access control, immutable content, and integrity 

verification.  These four areas are especially important when a CM tool is used in an 

unprotected environment, making OpenCM clearly the best choice for efforts that want to 

provide the most assurance possible in such environments.  

However, a high assurance effort introduces unnecessary risk by choosing a tool 

that is just “better than the others.” Until OpenCM runs on a high assurance operating 

system, a high assurance effort using OpenCM must provide additional environmental 

protections such as physical security, limited user access, and separation from other 

development efforts.  Ironically, these additional protections mitigate the other tools’ 

disadvantages in the four key areas where OpenCM shines, making the others tools more 

comparable to OpenCM. Providing multiple layers of assurance is still valuable, 

however, so teams using OpenCM would still be introducing the least risk. 

Though all the other tools, except CVS, have virtually identical total risk ratings, 

the source of risk is different for each tool. Furthermore, most tools have a unique, risk-

minimizing implementation in at least one area. For example, StarTeam has threaded 

discussions, AccuRev has an append-only database to protect immutable information, 

BitKeeper provides integrity verification, and Dimensions and ClearCase provide 

superior lifecycle support.  

B. RECOMMENDATIONS 

The ideal tool for a high assurance project would have all the risk-minimizing 

implementations for a total risk rating of 11. There is no reason why such a tool could not 

exist, for none of the “best” implementations are incompatible with another “best” 
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implementation. Alas, no such CM tool currently exists. The best approach for selecting a 

CM tool for a high assurance development project is to: 

1. Identify several tools that meet your project’s requirements, 
including the requirements that are not specifically assurance-
related. 

2. Determine the implementation methods of each tool and identify 
the risks created by the disadvantages of these methods described 
in section IV. 

3. Figure out the environmental requirements for each tool that 
minimizes the tool’s risks identified in step 2.  

4. Select one of the tools whose environment your project can 
support. Be realistic about what your team and situation will 
support; for example, will all work really be done on a private 
network at one site? Make sure that your team is prepared to 
support the required protections, or your effort will likely fail. 

5. If none of the tools are sufficient, repeat the steps 1-4 until you 
find an adequate tool.  

If the protection environment your team creates that supports your daily 

development requirements is deemed insufficient to protect your effort from subversion 

by a malicious insider, then you should create separate “Everyday CM” and “Trusted 

CM” systems and processes as described in Section II.D, using the tool selection 

approach above with somewhat different project and environment requirements.  

Following these recommendations and an appropriate CM plan should enable an 

high assurance effort to exceed the Common Criteria’s configuration management 

requirements for EAL7. 
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APPENDIX 

A. DETAILED CM TOOL INFORMATION  

This appendix includes detailed information on each of the tools evaluated in the 

thesis. The information included here is not meant to be comprehensive, but merely to 

allow readers to get a sense of what differentiates each product from a high assurance 

perspective. Performance is not mentioned, for example, because it does not have a 

special relevance to high assurance projects. Note that the depth of the information on 

each tool varies significantly based on how unique each product is and on the author’s 

source and time limitations. The descriptions here usually do not include information that 

is provided in Table 5 (“CM Tools Evaluation Summary”).  

1. AccuRev 

Information on AccuRev came from product literature on the company’s website 

[ACRV03], an Internet demonstration of the product by AccuRev sales personnel 

[ARDC03], and follow-up phone discussions with the same AccuRev personnel 

[ARBM03]. 

AccuRev is one of the newer tools, created by a company that was founded in 

1998 by people that worked on the ClearCase product. AccuRev is a middle-tier CM 

product (i.e. supports range of version-control functions with minimal lifecycle support). 

Below are some of the key AccuRev features. 

a. Complete, Time-Safe Versioning 

When a change is committed in AccuRev, all information about the state 

of the project under CM is recorded, including file contents and metadata, directory 

contents and metadata, workspace contents, project contents and structure. AccuRev 

makes this information immutable by storing it a proprietary, append-only database. No 

one can change history, not even administrators, making the information “time-safe” or 

safe from change over time. This is a great feature for high assurance efforts. 
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b. Completely Atomic Transactions 

AccuRev designed commits of multiple files to be atomic, unlike other 

tools, which implement multiple-file commits as multiple individual file commits. This is 

another important feature. 

c. Dynamic Streams 

Instead of branches, AccuRev uses streams. Streams are stages through 

which files progress. Streams are “dynamic” because they can be changed as necessary 

during a project. For example, if the team decides that they need two QA streams halfway 

through the project, they can insert a new stream (e.g., “QA Stage 2”) in the development 

process. They can later remove it. To do this with most tools is impossible. Though 

AccuRev markets this feature as a real strength because of the dynamic nature of most 

development team’s methodology, it does not appear to help high assurance efforts, 

which (should) have a fixed, formal methodology. Malicious users could exploit the 

stream flexibility by, for example, removing an approval stage in a stream temporarily in 

order to avoid having to pass through it. AccuRev does allow you to limit the design of 

the streams to specific users, so this threat can be minimized.  

AccuRev has plans in future versions of its product to allow users to 

include components in a configuration. For example, you could link a driver with a 

specific project. Implementing this with branches would be difficult.  

d. “Integrated” Issue Tracking System 

AccuRev has a companion issue tracking system that provides a rich set of 

functionality and that is easily customized. One can link a commit in the CM system to 

an item in the Issue Tracking System (for example, link a change in a several code files  

to a change request). Unfortunately for high assurance projects, the Issue Tracking does 

not has no security at all currently, leaving any user able to change information (e.g., 

change the contents of the change request). The next release may honor repository-level 

security.  
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e. Access Control and User Authentication 

Access Control Lists can be defined at the stream level. There is no history 

kept on access control lists, so there is no way to see who had access to what at what 

time, though obviously any change made by a user would be recorded and auditable. User 

authentication information is stored in a server-side script. 

f. Usability 

AccuRev claims that its tool requires fewer people to administer than 

other tools do. This claim makes sense given the clean and simple user interface, 

including its visual representation of a project’s streams.  AccuRev provides a pleasant 

user experience for common actions like filtering changes, tracing a set of changes, 

committing files, and merging. 

g.  Cost 

AccuRev’s cost is about $1000/user, which includes first year support. 

Second year maintenance per user is $350. 

h. Product Specifications 

According to AccuRev’s website as of May, 2003, the product has the 

following specifications: 

• Platform Support: Alpha systems: Compaq Tru64 Unix (version 
4.0 +); HP systems: HP-UX (version 11.0 +); IBM systems: AIX 
(RS/6000) (version 4.3.2 +); Intel/x86-based systems: Windows 
XP, 2000, NT 4.0, Windows 95/98/Me (full client support, server 
for evaluation only), Linux ( kernel versions 2.0.36 +, RedHat 5.0 
+), FreeBSD (version 3.3 +); PowerPC systems: Linux (version 
2.2.6-15 +); SGI systems: Irix (version 6.2 +); Sun systems: Solaris 
(version 2.5.1 +) 

• Development Tool Integration:  Supports a variety of IDEs, and 
other tools, including MS-SCC with MS Visual C++. 

2. BitKeeper 

Information on BitKeeper came from BitWise’s website [BKWB03], comparisons 

by OpenCM [OPCN02], overviews of tools in a CM book [BERC03], and LinuxWorld 

[BKLX03].  
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a. Peer-To-Peer Repository Architecture 

BitKeeper’s most unique feature is its peer-to-peer repository architecture. 

Every workspace is considered a repository and a user can “push” or “pull” changes 

to/from other repositories. A typical use of the flexible architecture is as a hierarchy of 

repositories, with the root repository considered the closest to release. Each repository 

can be used as a staging or approval point.  

Though BitKeeper’s architecture is typically used to support teams that are 

geographically distributed and even disconnected, a high assurance team could set up 

BitKeeper on a closed environment and take advantage of its architecture to separate 

regular development from the “Everyday CM” for the trusted computing base and to 

separate both of these from the “Trusted CM.”  

The distributed architecture has more redundancy in it than tools that rely 

on a central repository; if one repository fails, much of the information is likely to be 

stored on other repositories.  

Multiple repositories does introduce the question of how the repositories 

establish and maintain trust with one another—or more specifically, how they prevent 

malicious users from passing an imposter repository as a real one. BitKeeper fails to 

provide any mechanism to detect imposter repositories [OPEL03]. Thus if a high 

assurance effort were to use BitKeeper, they would have to provide mechanisms using 

physical security, trusted users, etc. 

b. Tracking Changes With Changesets  

Like AccuRev, BitKeeper tracks changes at the configuration level in a 

time-safe way. Thus changes to multiple files are considered one unit of work (a 

changeset), and all information about the entire tree structure is stored. Whereas some 

tools require users to explicitly “tag” a moment in time, BitKeeper automatically tags for 

every changeset 

c. Data Integrity With Checksums 

In order to detect integrity problems (e.g., those caused by disk errors), 

BitKeeper keeps track of each revision’s checksum. Systems without such a mechanism 
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(such as those based on RCS) are unable to detect bad data until the system actually tries 

to retrieve a file that includes the bad data.  

BitKeeper’s checksums are not protected, thus they do not protect the 

integrity of the data from malicious users; such users would merely change the data and 

the checksums.  

3. ClearCase 

Information on ClearCase came from ClearCase product information on Ration’s 

website [CLCS03] and an interview with a long-time user of ClearCase and other 

Rational products [CLJS03]. 

ClearCase is the current market leader, with over 30% of the market according to 

a 2000 study by IDC [IRCM02]. It is on the more complex end of the functionality 

spectrum because it supports lifecycle management. Some of its key features are 

described below. 

a.  Part of a Software Methodology Framework 

ClearCase is just one the many products that the company Rational sells 

that supports the Rational Unified Process® (RUP), a comprehensive framework for 

delivering software development best practices. Out of the box, ClearCase comes setup to 

support RUP.  

b. Lifecycle Support 

ClearCase lifecycle can be customized to support the customer’s 

workflow,  

c. Integration With Issue Tracking Tool 

Rational’s companion tool is called ClearQuest. Using both products 

together enables you “to enforce common, consistent processes for submitting, assigning, 

resolving and verifying modifications” [CLCS03]. ClearQuest only runs on Windows and 

Microsoft IIS. 

d.  Product Specifications 

According to the materials on their web site in May, 2003, ClearCase has 

the following specifications. 
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• Client Requirements: Minimum: 64 MB RAM, 35 MB Hard Disk 
Space  

• Server Requirements: Minimum: 128MB RAM, 70MB Hard 
Disk Space  

• Supported Web Browsers: Microsoft Internet Explorer, Netscape  

• Supported Web Servers: Apache, Microsoft IIS, Netscape  

• Supported Environments: Windows XP Pro, Windows 2000, 
Windows NT, Windows 95/98/ME (client only), Compaq Tru64 
UNIX, Hewlett-Packard HP-UX, IBM AIX, Red Hat Linux Intel, 
SCO UnixWare, Siemens Reliant UNIX, Silicon Graphics IRIX, 
Sun Solaris SPARC, Solaris Intel, SuSE Linux Enterprise Server 
for IBM S/390 and zSeries  

• Product Integrations: IBM VisualAge for Java, IBM WebSphere 
Server, IBM WebSphere Studio Application Developer, Borland 
Jbuilder, Microsoft Visual Studio, Visual Basic, Visual C++, 
Visual J++, Visual InterDev, Sun Forte for Java and C++,  Sybase 
PowerBuilder, All SCC-compliant tools  

4. CVS 

The information gathered for CVS comes from CVS’ website [CVSW03], the 

official CVS manual [CVSC03], a book on using CVS [CVSF99], interviews with users 

of CVS [CVSD03] and the website of Subversion, the open source project that is 

attempting to take over the CVS user base by providing a similar product without CVS’ 

glaring omissions [CVSS03].  

CVS is one of the most widely used CM tools, especially in the open source 

community, not least of all because it has a long history of being free. CVS was initially a 

collection of scripts, posted to the Usenet newsgroup comp.sources.unix in 1986, 

designed to improve the dominant version control tool at the time, Revision Control 

System (RCS). RCS provided a format for tracking changes to files. CVS added the 

ability to track files into a project, allowed parallel development, and (in the early 1990s) 

network awareness. Along the way, CVS was rewritten in C.  

According to Fogel, CVS has become the “free software world’s first choice for 

revision control” because there is a synergy between the way CVS encourages a project 

to run and the way free projects actually do run. As evidence of the synergy, Fogel points 
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out how convenient CVS makes providing read-only access to the world and generating 

patches to the frequently changing source. High assurance efforts need to carefully 

control both access to their repository and changes, suggesting less “synergy” between 

CVS and high assurance efforts.  

CVS has several shortcomings in the areas of configurations, system access, and 

user authentication, discussed below. 

a. Configurations 

When a commit of multiple files is performed in CVS, the system knows 

that those revisions were performed together because they have the same date/time 

stamp, the same commit comment, and, if the user uses a tag, the same tag name. None of 

these provide any protection. Not only are date/time stamps notorious for being easily 

manipulated and commit comments obviously repeatable, but one can never be sure that 

all files in a set were committed because CVS doesn’t support atomic transactions. Thus 

the tagged version that consists of fifteen files may have been a commit of twenty files 

that got interrupted by a network outage.  

b. System Access and User Authentication 

As CVS’ own manual states, “Once a user has non-read-only access [and, 

in previous versions, read-only access] to the repository, she can execute programs on the 

server system through a variety of means. Thus, repository access implies fairly broad 

system access as well” [CVSC03, Section 2.9.3.3]. Also, passwords for clients are stored 

in a “trivial encoding” on the client side and transmitted in this encoding. In summary, as 

the manual puts it,  

Anyone who gets the password gets repository access (which may 
imply some measure of general system access as well). The 
password is available to anyone who can sniff network packets or 
read a protected (i.e., user read-only) file. If you want real security, 
get Kerberos. 

5. OpenCM 

The information on OpenCM was gathered from three papers written by the 

OpenCM creators [OPCN02, OPAI02, OPEL03], from email and phone discussions with 
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the creators [OPJS03, OPJL03, OPJV03], and from the OpenCM’s User Guide 

[OPEN03]. More research on OpenCM is required to fully analyze its implementations 

and protocols; the descriptions here should be considered only a starting point.  

OpenCM was created to fulfill the requirements of the John Hopkins team 

creating EROS, a high assurance operating system. Their unique requirements included 

the ability to support a geographically distributed and often off-line development team, 

and the ability to provide more assurance than existing CM tools. The EROS team 

wanted more assurance in the areas of provenance tracking and integrity checking across 

potentially hostile replicates. To provide the additional assurance, OpenCM employs 

cryptographic hashes for object naming and public key encryption for user and server 

authentication. Specific details below.  

OpenCM is still relatively unproven, and some aspects of the features described 

below may not be fully implemented yet. As of June 2003, OpenCM was in alpha 

(version 0.1.2alpha5pl2-1). Though OpenCM is not as widely deployed as the other tools 

evaluated, OpenCM has been self-hosting for more than a year and OpenBSD is using 

OpenCM to maintain a duplicate repository [OPJS03]. Also, many of the major open 

source operating system efforts have asked whether OpenCM could be incorporated into 

their release.[OPEN03], showing that the tool has at least a potential market. 

a. Repository 

For a given development project, one server is considered the central 

repository and creates the main branch. Other servers can be set up as replicates of the 

central repository, or of existing replicas, though OpenCM can be setup to have exactly 

one repository. Each OpenCM server is responsible for authenticating its users. 

b. Working Disconnected  

The replica repositories do not need to be connected to the central 

repository at all times. They can periodically connect and get and send updates. When the 

central repository accepts the updates (more on this below), the entire history of commits 

from the replica (and perhaps from its replicas) is stored on the central repository, 

providing a complete history. Just as replicas can work disconnected from the central 
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repository, users can work disconnected from their local repository and make multiple 

local commits. These local commits are uploaded into their repository when they 

reconnect.  Communication between replicas is done using TCP/IP and a specific 

OpenCM protocol. 

c.  Server Repository Naming 

OpenCM Repositories or Servers are named by the hash of the server’s 

initial public key. The public key is used because it will usually uniquely identify the 

server (though since each server generates its own public/private keys, there is no 

guarantee of uniqueness).  Servers also generate public/private keys for their users. User 

public keys are stored on the server without encryption; private keys are protected by the 

key’s user’s password.  

OpenCM Servers need to know how to contact other servers higher up in 

the replication chain. OpenCM plans to use DNS “repository registry” [OPAI02, p. 6], so 

server_registry.opencm.org will resolve to an IP address.  

d.  Object Naming 

Frozen objects (i.e. content objects that never change such as a version of 

a file) are named by the cryptographic hash of their contents. Mutable objects are named 

with a URI of the form: opencm://server-name/swiss-number. The server-name is 

described above. The swiss-number is a cryptographically strong random number 

generated by SSL. The server is responsible for ensuring that there are no collisions 

between swiss-numbers on its machine; collisions with other servers are not a problem 

since the name of the object includes the server’s name.  

Only the originating repository can make changes to mutable objects. 

Every time a mutable object is changed, the server digitally signs the change. Part of the 

information signed includes the mutable object representing the authenticated user 

making the change. 

e.  Home Directories 

Given that hashes are not very human-friendly, OpenCM uses a 

mechanism called home directories that allows users to map the hashes to names. “Each 
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user maintains total control over entries” in his/her home directory [OPEN03], but one 

can setup common directory namespaces that several members can modify. A malicious 

insider could manipulate the human readable names in a common namespace in an 

attempt to trick other team members into believing that one file is actually a different file. 

OpenCM has two features to help manage this risk. Firstly, an additional directory with 

more restricted access can be set up that maintains the correct mappings and serves as a 

check against the working directory. Secondly, history can be kept on all changes to 

names in home directories, providing an audit trail. 

f.  Users, Authentication and Access Control 

OpenCM currently relies on SSL user authentication, but they are 

considering moving to SSH [OPNV03]. Only a user in the administrators group can 

create users. To create a user, the administrator must have the user’s X.509 certificate in 

PEM format; the manual suggests emailing the certificate to the administrator. Users are 

requested to secure their private key with a passphrase. Users can remove their passwords 

(though they are strongly discouraged from doing this in the manual). Administrators can 

create groups in OpenCM that consist of a set of users. Group membership is transitive.  

Access controls for users and groups are initially determined by the user 

that created the user or group. Access can be defined at the level of the mutable object 

(e.g., file, revision), since each object has a read and a write group. In addition, each 

repository has a higher-level access control list that determines whether the user/group 

has any access to the repository; this list overrides any object-specific rights the 

user/group may have. 

Because each object has its own read and write groups, OpenCM can 

support the principle of separation of privilege by preventing the creation of an “all-

powerful” administrator; instead, read and write privileges can be distributed among a set 

of administrators. The one power that all users in the admin group have is the ability to 

change a user’s key; OpenCM plans to add auditing to this function. 
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g.  Configurations 

OpenCM distinguishes itself from CVS in one way by claiming that 

OpenCM has “real configurations”—i.e. configurations are sets of files, not individual 

files linked by a time/date stamp or a tag. In OpenCM, a configuration is a mutable object 

and is represented in part by an array of the names of the frozen content files. Every time 

the configuration is changed, the server signs the changed object.  

h.  Branches and Changes 

OpenCM uniquely numbers branches. Users can add tags (i.e. names) to 

specific branch versions. These names are stored in a user’s home directory. OpenCM 

recommends that you maintain development and audited branches for high assurance 

systems. 

i.  File System 

OpenCM stores the mutable and frozen objects in a proprietary format. 

OpenCM offers several different options for storing objects, including both flat files 

(where one file is one object), and a delta storage strategy. The underlying operating 

system’s access control lists protect the file store.  

j. Recovering From Key Compromise 

When it is discovered that a user’s key has been compromised, the recover 

strategy consists of:  

• Disabling the user’s write access to the repository (using the 
overarching access feature described above),  

• Auditing the repository to see what the user has done (which is 
easy to do since the user object is part of the information signed by 
the server every time a revision is created)  

• Generating and installing a new key for the user 

When a server’s key is compromised, there is a window of opportunity for 

an attacker to set up an imposter server using the stolen key. But for the attacker to have 

any impact, the attacker must also be able to convince clients that its repository is 

legitimate by: 
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• Getting its IP address to the client and making the client believe 
that it is the real IP (or rerouting all traffic coming from the client 
destined for the real IP to its own IP) 

• Being able to authenticate users by obtaining their keys  

OpenCM provides several mechanisms to help minimize this window and 

this risk. Once a compromise is discovered, the server’s key is put on the revocation list. 

The server then creates a new key for itself, and signs that key with its offline private key; 

the offline keys are distinct from the public/private keys that the server uses to sign 

changes. The offline key is used only to sign key updates. Once these changes have been 

made, the imposter will no longer be able to maintain its cover. 

k.  Guarantees 

In [OPEL03], OpenCM’s creators claim that OpenCM provides several 

guarantees. The guarantees are listed below, along with our best explanation for how 

OpenCM provides these guarantees.  

Guarantee Explanation (of Author) 
1. The user can verify that any object 

obtained from a repository is valid. By 
“valid,” we mean that an integrity 
check can be performed that reveals 
whether this object is complete, and 
that an authorized modifier of the 
branch checked it in. Valid does not 
imply correct – verifying the code is 
beyond the scope of OpenCM. 

• Verify that object was checked-in by an 
authorized user: Decrypt digital 
signature using repository’s public key. 
User object is part of the information 
signed, and can thus be verified.  

• Integrity check for completeness: Hash 
object and compare to hash in the 
decrypted signature. If the hashes match, 
the integrity is sound. 

2. While all objects received can be 
authenticated, no guarantees are 
provided about whether the object is up 
to date unless the user obtains it from 
the originating repository. If the object 
is obtained from a replicate repository, 
it is guaranteed to have come from 
earlier valid state of the branch. 

• OpenCM’s naming and signing when 
users commit new or changed objects 
ensures their integrity and 
authentication. Since only objects that 
have been committed can be replicated 
to another repository, an object from a 
replicate repository is guaranteed to 
have come from an earlier valid state of 
the branch. See “Recovery From Key 
Compromise” above for an explanation 
of what happens if the server’s key is 
compromised. 
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Guarantee Explanation (of Author) 
3. If a user’s authentication key or client 

is compromised, total integrity 
exposure is limited to the set of 
branches that the user can modify; 
OpenCM as a whole is not 
compromised. 

• OpenCM as a whole cannot be 
compromised by someone with a 
compromised key because that user 
would only have authority to make 
changes to branches to which the key’s 
user had access. 

4. Integrity verification is designed to be 
possible even if the user obtains certain 
types of partial copies of a branch. For 
example, the user may choose to 
replicate only selected versions of a 
branch, and can validate that the 
versions obtained are authentic. 

• Partial versions of a branch can be 
validated using the digital signatures, as 
in Guarantee 1 above. 

5. Provided the originating repository is 
not compromised, the complete history 
of each branch originating at that 
repository will be available from that 
repository. This has implications for 
merge management. 

• All history will be available because all 
commits done by users in their 
individual workspaces are stored when 
the users commit to their local replica 
and all commit history is transferred 
when a local replica branch is merged to 
another replica’s branch.  

6. The repository records authentication 
information for every change. In the 
event of user key compromise, this 
information is sufficient to allow audit 
of suspicious changes. 

• Since every change is signed by the user 
making the change, all changes made by 
a specific user can be identified and 
audited 

7. Impersonating a repository requires 
both stealing the repository’s private 
key and compromising the IP routing 
mechanisms near the client 

• Stealing repository’s private key: In 
order to make any changes on a 
repository, the server must have the 
private key. (An imposter repository that 
cannot make changes can only provide 
users with a valid, but perhaps not up-
to-date, version.) 

• Compromising the IP routing: There is a 
registry that maps server replica names 
to IP addresses. This mapping would 
have to be compromised or the traffic 
coming in/out of a specific client would 
have to be captured and rerouted. 

 
Table 6.   OpenCM Guarantees Explained 
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6.  Perforce 

The author gathered information on Perforce from product literature on Perforce’s 

website [PFWB03], and interviews (including a demonstration) with two users at an 

active Perforce installation [PFWG03]. 

Perforce is a popular commercial tool in academia, in part because open source 

projects (as most academic projects are) can license it for free.  Perforce is one of the 

easier tools to understand quickly because of its branching model and its use of the 

operating system’s file system to store files under CM. Some of its key features are 

described below. 

a. Branching Model: “Inter-File Branching™” 

Most CM tools promote towards the trunk: the user workspace is 

considered a leaf on the tree. As configurations are moved from user workspace to test to 

release, the configuration travels from the leaf to the “test” branch, and then closer to the 

trunk to the “1.0 release branch.” Perforce turns this upside down. A typical development 

project would create a branch off the tree that is going to server as the working area for 

the version. When configurations are ready for promotion to test, a branch is created off 

of the existing branch. The release branch becomes another branch further from the trunk. 

The benefit of this model is that it supports multiple active maintenance lines, which the 

typical branching model cannot. For example, suppose that a project wants to split the 

project after the test stage into two stages to make changes for releases for two different 

platforms. In the traditional model this is not easy since branches converge as they get 

closer to release. But in Perforce, branches diverse as they get closer to release, so 

creating two branches is simple and intuitive. Perforce maintains history of how a 

configuration moves from branch to branch. 

b. File System 

Perforce is one of the few tools evaluated that uses the operating system’s 

file system to store its files. Perforce uses the directory structure to provide information 

about the relevance of a file. For example, if you see a file named 

“depot/release/1.2/01/hello.c,” you know it is part of release 1.2.01.  The benefit of this 
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for high assurance systems is that identifying the product and exporting it to anther 

system (e.g., for “Trusted CM”) is especially straightforward. No trust needs to be placed 

in the tool’s ability to include all the files in the export. One simply copies the 

appropriate directories to another medium.  The metadata can be exported to a SQL 

database for analysis. 

Perforce stores metadata about the files under CM in a database next to the 

files. The issues related to this are discussed in Section IV.B.1, “Repository Structure: 

Use Operating System’s File System,” above. 

7.  Merant Dimensions 

The author gathered information on Merant Dimensions by reviewing product 

literature on Merant’s web site [PVCS03] and through emails with PVCS sales personnel 

[PVCE03]. 

Merant Dimensions is one of the most complex, feature-rich CM tools evaluated. 

It markets itself as the product for the enterprise to manage not just CM, but enterprise-

wide process management, issue management, change management, and workflow. 

Merant Dimensions made a name for itself as PCMS Dimensions when owned by SQL 

Software. Note that PVCS Professional, also from Merant, has a completely different 

source and history; it is not just a scaled down version of Dimensions.  

Dimension’s key features are described below. 

a. Lifecycle Management 

Dimensions’ key concepts in lifecycle management are: lifecycles, states, 

and change documents. Lifecycles are custom-designed series of activities or states 

performed in a specific order. (“Off-normal” states such as “failed tests” can be set up for 

items that cannot be promoted to the next “normal” state.) Entry and exit criteria for each 

state can be set up to control how configurations move through the states. Change 

Documents are custom designed electronic forms with up to 220 user-defined fields. 

Change Documents can be linked to a lifecycle by requiring different parts of the form to 

be completed by specific people (or specific roles) as part of different states’ entry or exit 
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criteria. Two examples of Change Documents are “Product Change” and “Test Defect 

Report.” 

b. Relationships 

Dimensions provides a way to link configuration items with other items 

and with Change Documents. The built-in relationships include “affected by”, 

“information” and “in response to”, but users can define additional relationships. In a 

high assurance project, one might want to link the proof that the FTLS implements the 

security model with a “proves” relationship. Being able to define relationships between 

items in a configuration helps to self-document the project, helping external parties 

become familiar with the project more quickly.  

c. Rules 

Rules can be created and applied to connect Change Document lifecycles 

and item lifecycles (or two Change Document lifecycles). There are three types of rules: 

• Creation Rules (e.g., must be associated with Change Doc “in 
response to”) 

• Action (i.e. cannot move to another state in lifecycle without 
related Change Doc) 

• Closure (i.e. specifies state through which item must pass before it 
is closed) 

d. Access Control 

Merant Dimensions allows administrators to assign roles to users against 

“Design Parts” or parts of your system. Thus, administrators can limit access to parts of 

the system to those who require access.  

e. Export/Import 

Dimensions provides several options for importing and exporting files and 

metadata. Users can export a read-only copy of all the files in a baseline into another 

system’s file system using the “Release” or “Deploy” functions. Metadata can only be 

exported to another version of Dimensions and must use a Dimensions-created utility. 

Users can import files from a directory structure into Dimensions. If users want to import 
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metadata, they can use an XML utility that currently supports conversions from PVCS 

Professional and Rational ClearCase. 

f. Automating the Change Review Process 

Merant includes a description of how to use their product to improve a 

project’s Change Review Process. Because of the importance of the Change Review 

Process in ensuring that only authorized changes are made (Goal 4), the full description 

below from Merant’s “Change Management Capabilities” technical brief [PVCS03] is 

included below. This process could be used in “Everyday CM” to help ensure that 

changes made are the appropriate, authorized changes. 

Automating your Change Review Board is an excellent way to take 
advantage of the power of PVCS Dimensions.   

Many development organizations rely on a Change Review Board to 
control change in their products or system. A Change Review Board 
(CRB) generally consists of three to five members of the development 
organization, usually in lead development, project and test management 
roles. It is the board’s job to ensure that all changes entering a system 
meet the requirements of the customer, have been developed and tested 
appropriately and do not negatively impact the product or system.   

Often, when a change review board is first enacted, the CRB is 
overwhelmed with the number of changes to a particular product or 
system. Paper-based systems fail to describe the relationships, 
dependencies and impacts of a change. Using PVCS Dimensions allows 
most Change Review Boards to go from a static weekly meeting plus too-
frequent emergency sessions to a dynamic online format for approving 
changes as needed.   

A CRB Scenario 

Karen, the Director of Development for ACME’s Customer Service 
Software System, is ultimately responsible for her customers’ satisfaction. 
She heads up a Change Review Board consisting of three other members:  

• Bob - Release Manager  
• Sarah - Test Manager  
• Maya - Business Analyst  
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The Change Review Board reviews all changes to the system. They 
actually review and approve each change twice, at the beginning of the 
change lifecycle and just prior to release. Maya, the business analyst, is 
responsible for ensuring all changes meet the customer requirements. Bob, 
the release manager, is responsible to ensure that any change to the system 
doesn’t negatively impact anyone else. The ACME customers do not like 
to be surprised by down systems, or lost capabilities.   

<<author removed the description of the process before the company 
implemented PVCS Dimensions>> 

She bought PVCS Dimensions and implemented an online change review 
board. Today the Change Review Process looks like this: 

 

Figure 2.   Merant PVCS Dimensions’ Change Review Process Example 
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Change Request State. Maya’s customers use the PVCS Dimensions web 
browser interface (I-NET) to request changes to the system. Maya has 
added some attributes to the change request that help to filter and clarify 
the changes. She uses a component attribute to send the change on to the 
component owner, a lead developer responsible for that aspect of the 
system. For example, a change request for a new online report shows up in 
Maya’s pending list. The “component attribute” indicates that it is a 
change to the reports system. Maya reviews the change and actions it to 
the requirements and technical feasibility state, delegating the change 
request to Jeff, the lead developer for reports. 

Requirements and Technical Feasibility State. Jeff reviews the change 
for technical feasibility. He works with Maya and the customer to come up 
with a requirements specification, which he stores in the Dimensions 
repository and relates to the change request. Jeff also identifies the files to 
be modified and relates the Change Document to them. He identifies and 
documents any impacts to the current system, enters a ballpark estimate in 
the “cost” attribute field, and actions it to the Change Review Board state. 

Change Review Board 1 State. Instead of the board meeting each week, 
each member reviews the changes online. If there are no issues raised after 
3 days, Karen, the Development Director, approves the change and actions 
it back to the component owner, Jeff, for a design and develop phase. An 
email is automatically sent to the originator of the change request, 
indicating that the change was reviewed and accepted. 

Design and Development State. The Developer makes the required 
changes, and actions the Change Document and related items to the Sarah, 
the test manager. 

Test State. Sarah tests the change, and if there are no issues, actions the 
change back to the CRB, where the team reviews it for release, identifying 
any release impacts to the current system. 

Change Review Board 2 State. Bob, the release manager, enters a release 
date in the “release date” attribute, and Karen, the development director 
actions the change to the release state. 

Release State. The Change Document and related code are released to the 
system, and Bob actions the Change Document and code to the Customer 
Follow-up state. 
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Customer Follow-up State. Maya contacts the customer to ensure they 
are satisfied with the change. If they are, Maya closes the Change 
Document. If not, Maya notes the changes and moves the Change 
Document back to the beginning phase. 

Off-Normal States.  If there is a problem, the change is moved to an off-
normal state. From the off- normal state, a change can be moved to a 
previous normal state, or it can be sent back to the beginning, depending 
on the severity of the problem. The Change Review Board has turned on 
the Change Management Rules, so only the items related to a Change 
Document can be modified. This has eliminated the number of rogue 
changes that have entered the system. The Change Review Board still 
meets on a bi-weekly basis, to discuss medium and long-term projects, and 
to work out any other process kinks that may have occurred. The CRB 
realized that there were times when a good change request came through 
and there weren’t enough resources to work the request. Instead of 
rejecting the request, they’ve created an off-normal state called 
“postpone.” Used rarely, it holds work that will be addressed at a later 
date. Every month, Maya runs a Change Document report that shows 
which change requests are in a postponed state. The CRB reviews the 
change requests again at the next meeting and may action the change to a 
normal status as resources become available. 

Online Change Reviews and Management improve the quality of the 
products that you deliver, as well as the timeliness of your delivery. PVCS 
Dimensions comes complete with out-of-the-box Change Document 
lifecycles, or, like ACME, you can design one personalized for your 
environment. 

8.  StarTeam 

The author gathered information on StarTeam from information on Borland’s 

StarTeam website [STWB03], and from email correspondence with Borland’s sales 

personnel [STKS03]. StarBase sold StarTeam until January, 2003, when Borland 

purchased StarBase. StarTeam is another full-featured tool similar to PVCS. The primary 

reason it was evaluated in addition to PVCS is its support for threaded discussions. 

a.  Lifecycle Support 

StarTeam, like PVCS Dimensions, has customizable workflow, forms, and 

process rules. A process rule can, for example, prevent users from adding a file or 

checking in a change if it does not reference an approved requirement, change request, or 
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task. When a user does reference the change request, StarTeam automatically creates a 

link between the file version and change request. Email notification of users can be set up 

as well.  

b.  Threaded Discussions 

StarTeam provides the ability to have threaded discussions linked to a 

project, a project folder, or directly to an  item within a project. The discussion contents 

are stored in the same database as the project files. Administrators can determine the 

types of access users have to the discussions, providing some measure of reputability. 

These discussions can provide making a permanent record of valuable information on 

why decisions were made and who made them. The benefits of threaded discussions 

include: 

• A team member can easily incorporate the input from others or ask 
questions while working on a file.  

• Notes explaining why a particular method was or was not used can 
be included as linked topics.  

• Topics can point out things that may have to be changed in a later 
release of the product. 

c.  Encryption 

StarTeam has an option for strong password enforcement. You can also set 

different levels of server-based data security using industry standard RSA encryption. 

StarTeam also supports the locking of all project assets (not just files) to prohibit changes 

from being overridden by other users. 

d.  Access Control 

Access control functionality is similar to that of PVCS Dimensions 

e.  Configuration Notions 

Each asset is independently versioned, but sets of assets such as files and 

change requests can be versioned as well, as described in their product literature 

[STWB03]. 

Baselining provides the capability to view a configurable snapshot of the 
way a project looked at a specific point in time. Each asset in StarTeam is 
independently versioned. Sets of assets such as files and change requests, 
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at specific versions, are baselined, natively, inside the system. By 
comparing baseline views, users can immediately see where volatility, 
modifications, additions, and deletions have taken 

f.  Specifications 

• Repository: Microsoft SQL 7 and 2000, Microsoft Access 2000, 
IBM® DB2® UDB 7.2, Oracle8i™ (8.1.5, 8.1.6, 8.1.7),Oracle9i™ 
release 1 (9.0.1.3.0) 

• Server: Intel® Pentium® 4/900 MHz―1 GHz minimum (Dual or 
Quad Pentium Intel Xeon® 4/2.26 GHz or higher recommended), 
512 MB RAM minimum (1 GB or more recommended), 16 GB or 
higher hard drive, Caching SCSI controller RAID (minimum 16 
MB RAM), 500 MB page file, Microsoft® Windows® 2000 
(SP3), Windows NT® Workstation 4.0, or Windows NT Server 
4.0 (SP6a), Sun Solaris® 7.0/8.0 

• End User: Intel Pentium Pro/233 MHz processor, 256–512 MB; 
RAM; 300 MB page file; Microsoft Windows 98®, Windows NT 
4.0, Windows 2000, Windows XP®, or Java™ enabled Linux® 
and Unix operating systems. 
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